1、LeetCode1049最后一块石头的重量II
题目链接:1049、最后一块石头的重量II
尽量让石头分成重量相同的两堆,相撞之后剩下的石头最小。
容量为sum/2的背包最多可以装多少重量的石头,先求dp[sum/2]。
最后两边相差 sum - dp[target] - dp[target]。
class Solution {
public:
int lastStoneWeightII(vector<int>& stones) {
int sum = 0;
for (int i = 0; i < stones.size(); i++)
{
sum += stones[i];
}
int target = sum / 2;
vector<int> dp(1501, 0);
for (int i = 0; i < stones.size(); i++)
{
for (int j = target; j >= stones[i]; j--)
{
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
}
}
return sum - dp[target] - dp[target];
}
};
2、LeetCode494目标和
题目链接:494、目标和
本题要如何使表达式结果为target,
既然为target,那么就一定有 left组合 - right组合 = target。
left + right = sum,而sum是固定的。right = sum - left
公式来了, left - (sum - left) = target 推导出 left = (target + sum)/2 。
target是固定的,sum是固定的,left就可以求出来。
此时问题就是在集合nums中找出和为left的组合。
1、dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法;
2、 dp[j] += dp[j - nums[i]];
已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 容量为5的背包
已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 容量为5的背包
已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 容量为5的背包
3、初始化:dp[0] = 1;
4、遍历顺序:先遍历物品,再遍历背包,背包倒序遍历。
5、举例推导。
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int target) {
int sum = 0;
for (int i = 0; i < nums.size(); i++) sum += nums[i];
if (sum < abs(target)) return 0;
if ( (sum + target) % 2 == 1) return 0;
int bagsize = (sum + target) / 2;
vector<int> dp(bagsize+1, 0);
dp[0] = 1;
for (int i = 0; i < nums.size(); i++)
{
for (int j = bagsize; j >= nums[i]; j--)
{
dp[j] += dp[j - nums[i]];
}
}
return dp[bagsize];
}
};
3、LeetCode474一和零
题目链接:474、一和零
本题中strs 数组里的元素就是物品,每个物品都是一个!
而m 和 n相当于是一个背包,两个维度的背包。
1、dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]。
2、dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
3、初始化:dp数组初始化为0。
4、遍历顺序:先遍历物品strs,再遍历两个背包,背包倒叙遍历。
5、举例推导。
class Solution {
public:
int findMaxForm(vector<string>& strs, int m, int n) {
vector<vector<int>> dp(m+1, vector<int>(n+1, 0));
for (string str : strs)
{
int zeroNum = 0;
int oneNum = 0;
for (char c : str)
{
if (c == '0') zeroNum++;
else
{
oneNum++;
}
}
for (int i = m; i >= zeroNum; i--)
{
for (int j = n; j >= oneNum; j--)
{
dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
}
}
}
return dp[m][n];
}
};