素数筛
枚举从2到n的每一个数,然后用它们的最小质因子去筛出后面的合数,所剩余的即为素数 。
用最小质因子是为了避免重复筛去合数
时间复杂度 O(n)
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<queue>
using namespace std;
int n;
int top=0;
int pd[10005];
int pri[10005];//标记数组
void prime()
{
for(int i=2;i<=n;i++)
{
if(!pd[i]) { pri[++top]=i;}//如果到当前的状态为止,这个数没有被筛去,这个数即为质数
for(int j=1;i*pri[j]<=n;j++)
{
pd[i*pri[j]]=1; //标记这个数为合数(这个数为i*pri[j])
if(i%pri[j]==0) break;//如果pri[j]是i的最小质因子,就不继续筛下去(后面的能用当前的i筛去的数一定可以用更小的质因子和更大的i筛去)
}
}
}
int main()
{
scanf("%d",&n);
prime();
for(int i=1;i<=top;i++) printf("%d ",pri[i]);
return 0;
}
为什么i%pri[j]==0时要break呢,又为什么这份代码是O(n)的呢?
我们考虑i*pri[j],如果i是一个合数,那么i一定可以拆分乘一个质数乘上一个别的数,如果这个质数比pri[j]要小的 话那么一定用这个质数就可以筛掉这个数,而不用pri[j],而我们遍历的是每一个质数,也就是说我们一定会在一个 时候枚举到i最小的一个质因子,再往大了的质因子都不应该用i消去,所以在这个时候跳出即可,而每一个数一定 只会被它最小的质因子筛掉,所以总时间复杂度是O(n)的。