线性筛

素数筛

枚举从2到n的每一个数,然后用它们的最小质因子去筛出后面的合数,所剩余的即为素数 。

用最小质因子是为了避免重复筛去合数

时间复杂度 O(n)

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<queue>
using namespace std; 
int n; 
int top=0;
int pd[10005];
int pri[10005];//标记数组
void prime()
{
	for(int i=2;i<=n;i++)
	{
		if(!pd[i]) { pri[++top]=i;}//如果到当前的状态为止,这个数没有被筛去,这个数即为质数
		for(int j=1;i*pri[j]<=n;j++)
		{
		    pd[i*pri[j]]=1; //标记这个数为合数(这个数为i*pri[j])
			if(i%pri[j]==0) break;//如果pri[j]是i的最小质因子,就不继续筛下去(后面的能用当前的i筛去的数一定可以用更小的质因子和更大的i筛去)
		}
	}
}
int main()
{
    scanf("%d",&n);
    
    prime();
    for(int i=1;i<=top;i++) printf("%d ",pri[i]);
    return 0;
}

为什么i%pri[j]==0时要break呢,又为什么这份代码是O(n)的呢?

我们考虑i*pri[j],如果i是一个合数,那么i一定可以拆分乘一个质数乘上一个别的数,如果这个质数比pri[j]要小的 话那么一定用这个质数就可以筛掉这个数,而不用pri[j],而我们遍历的是每一个质数,也就是说我们一定会在一个 时候枚举到i最小的一个质因子,再往大了的质因子都不应该用i消去,所以在这个时候跳出即可,而每一个数一定 只会被它最小的质因子筛掉,所以总时间复杂度是O(n)的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值