学习笔记
芒果海狮
这个作者很懒,什么都没留下…
展开
-
任务一 随机森林算法梳理
【任务一 随机森林算法梳理】目录1.集成学习概念2.个体学习器概念3.boosting bagging3.1boosting3.2baggging4结合策略(平均法,投票法,学习法)4.1平均法4.2投票法4.3学习法5.随机森林思想6.随机森林的推广7.随机森林优缺点8.sklearn参数参数9.应用场景 目录 集成学习概念 个体学习器概念 boosting bagging 结合策略...原创 2019-02-28 20:52:30 · 436 阅读 · 0 评论 -
任务三 XGB算法梳理
目录 CART树 算法原理 损失函数 分裂结点算法 正则化 对缺失值处理 优缺点 应用场景 sklearn参数 1.CART树 CART - Classification and Regression Trees 分类与回归树,是二叉树,可以用于分类,也可以用于回归问题,最先由 Breiman 等提出。 分类树的输出是样本的类别, 回归树的输出是一个实数。 1.1.CART算法 算法由以下两步...原创 2019-03-05 14:20:50 · 570 阅读 · 0 评论 -
任务二 GBDT算法梳理
Task2 GBDT算法梳理总述前向分布算法负梯度拟合损失函数回归二分类,多分类正则化优缺点Sklearn参数应用场景参考资料 总述 GBDT(gradient boosting decision tree)梯度提升决策树,是属于boosting集成算法的一类。bagging算法是每个个体学习器的样本是存在差异的,但是boosting每个个体学习器的样本是不变,但是每次迭代的样本权重是不同的。Ad...原创 2019-03-03 21:13:29 · 326 阅读 · 0 评论