python conjugate_Python umath.conjugate方法代码示例

这篇博客展示了如何在Python中使用numpy.core.umath的conjugate方法对复数进行共轭运算。通过导入numpy库并调用conjugate函数,可以实现对复数类型的数组元素求共轭,并提供了示例代码。
摘要由CSDN通过智能技术生成

# 需要导入模块: from numpy.core import umath [as 别名]

# 或者: from numpy.core.umath import conjugate [as 别名]

def _var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False):

arr = asanyarray(a)

rcount = _count_reduce_items(arr, axis)

# Make this warning show up on top.

if ddof >= rcount:

warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning,

stacklevel=2)

# Cast bool, unsigned int, and int to float64 by default

if dtype is None and issubclass(arr.dtype.type, (nt.integer, nt.bool_)):

dtype = mu.dtype('f8')

# Compute the mean.

# Note that if dtype is not of inexact type then arraymean will

# not be either.

arrmean = umr_sum(arr, axis, dtype, keepdims=True)

if isinstance(arrmean, mu.ndarray):

arrmean = um.true_divide(

arrmean, rcount, out=arrmean, casting='unsafe', subok=False)

else:

arrmean = arrmean.dtype.type(arrmean / rcount)

# Compute sum of squared deviations from mean

# Note that x may not be inexact and that we need it to be an array,

# not a scalar.

x = asanyarray(arr - arrmean)

if issubclass(arr.dtype.type, nt.complexfloating):

x = um.multiply(x, um.conjugate(x), out=x).real

else:

x = um.multiply(x, x, out=x)

ret = umr_sum(x, axis, dtype, out, keepdims)

# Compute degrees of freedom and make sure it is not negative.

rcount = max([rcount - ddof, 0])

# divide by degrees of freedom

if isinstance(ret, mu.ndarray):

ret = um.true_divide(

ret, rcount, out=ret, casting='unsafe', subok=False)

elif hasattr(ret, 'dtype'):

ret = ret.dtype.type(ret / rcount)

else:

ret = ret / rcount

return ret

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值