工程制图与计算机绘图试卷A,工程制图与计算机绘图第4章

本文详细介绍了工程制图中平面立体与曲面立体、曲面立体与曲面立体相交,以及多个立体相交的相贯线概念、求解方法和实例。通过例题演示了如何利用积聚性和辅助平面法求取相贯线的投影,包括特殊点和一般点的求法,以及相贯线形状与几何因素的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

a7f4a3f590493a1e451dd952a488fd7c.gif 工程制图与计算机绘图第4章

(38页)

017027ede2b98169721f2bff91fcfb8e.gif

本资源提供全文预览,点击全文预览即可全文预览,如果喜欢文档就下载吧,查找使用更方便哦!

9.90 积分

第4章 相 贯 线,4.1 平面立体与曲面立体相交 4.2 曲面立体与曲面立体相交 4.3 多个立体相交,图4-1 三通管上的相贯线,相贯线一般都具有以下基本性质: ; (1) 由于立体占有一定的空间范围, 因此两立体的相贯线一般是封闭的空间曲线。  (2) 相贯线上的每一点都是相贯两立体表面的共有点。  立体有平面立体与曲面立体之分,4.1 平面立体与曲面立体相交,[例4-1] 正四棱柱与圆柱体相交, 求其相贯线的投影,如图 4 - 2 所示。 ,图4-2 正四棱柱与圆柱体相交,(1) 空间及投影分析: 正四棱柱由四个棱面组成,这四个棱面分别与圆柱面相交。 其中两个棱面与圆柱轴线平行, 截交线为两段平行直线;另两个棱面与圆柱轴线垂直, 截交线为两段圆弧。将这些截交线连接起来即为所求相贯线。  相贯线的侧面投影积聚在圆弧1″6″5″(2″3″4″)上, 水平投影则积聚在123456上, 因此只需求出相贯线的正面投影。  (2) 作图: 应用点的投影规律, 分别求出1′、2′、3′、4′、5′、 6′, 然后按顺序连接起来即得到相贯线的正面投影。,[例4-2] 若圆柱体中间穿了一个四棱柱孔, 求穿孔后的相贯线投影, 如图4-3所示。,图4-3 圆柱穿四棱柱孔,,4.2 曲面立体与曲面立体相交,一、利用积聚性求相贯线,[例4-3] 图4-4所示是轴线正交的两圆柱相交, 求其相贯线的投影。  (1) 空间及投影分析: 由图可知, 这是两个直径不同、轴线垂直相交的两圆柱相贯, 其相贯线是一封闭的空间曲线。大圆柱的轴线垂直于水平面,小圆柱的轴线垂直于侧平面, 所以相贯线的水平投影与大圆柱的水平投影重合, 为一段圆弧; 相贯线的侧面投影与小圆柱的侧面投影重合, 为一个圆, 要求的是相贯线的正面投影。,图4-4 轴线正交的两圆柱相贯,(2) 作图: ① 先作特殊点。相贯线上的特殊点主要是轮廓素线上的点和极限位置点。从侧面投影可知, 相贯线上最高、最低、最前、最后四点依次为Ⅰ、Ⅲ、Ⅱ、Ⅳ点, 其水平投影也是已知的。利用点的投影规律, 由已知投影1、2、3、4和1“、 2“、3“、4“, 求得1′、2′、3′、4′, 如图4-4(a)所示。  ② 作一般点。根据需要作出若干一般点, 图4-4(b)中表示了作一般点Ⅴ、Ⅵ的方法, 即先在相贯线的已知投影, 如水平投影中取重影点5(6), 根据宽相等求出侧面投影5“、6“, 然后作出5′、6′。 ③ 光滑连接。用光滑曲线顺次连接各点的正面投影, 由于相贯线前后对称, 因而其正面投影实线、虚线重合, 如图4-4(c)所示。,[例4-4] 在圆柱体上钻一个小圆柱孔, 求其相贯线的投影。,图4-5 圆柱钻圆孔,图4-6 圆筒钻圆孔,二、辅助平面法,1. 作图原理,图4-7 辅助平面法作图原理,2. 作图举例 [例4-5]求作图4-8(a)所示部分球体与圆锥台的相贯线。  (1) 空间及投影分析: 部分球体为1/4球前后对称地切去两块而成,圆锥台的轴线垂直于水平面但不通过球心,其相贯线为前后对称的封闭空间曲线。因为球与锥台的各投影都没有积聚性, 故需用辅助平面法求作相贯线。,(2) 作图: ① 作特殊点。 很明显, 辅助平面P截球体及圆锥台均为它们的主视轮廓素线, 其交点Ⅰ、Ⅲ就是相贯线上的点。可先求出1′、 3′, 然后作出1、 3及1″、 3″, 如图4-8(b)所示。  为了作出圆锥台左视轮廓素线上相贯线点的投影, 可过圆锥台轴线作侧平面Q为辅助平面, 平面Q与圆锥台的截交线即圆锥台左视轮廓线, 平面Q与球体的截交线是以r1为半径的圆弧, 它们的交点Ⅱ、Ⅳ就是相贯线上的点。可先求得2“、 4“, 然后作出2′、 (4′)及2、4, 如图4-8(c)所示。,② 作一般点。在点Ⅰ、Ⅲ的高度范围内, 选取水平面R为辅助平面,平面R与球及圆锥台的截交线分别是以r2、r3为半径的圆弧, 它们的交点Ⅴ、Ⅵ就是相贯线上的点。先求出水平投影5、6, 然后找到5′、6′和5“、 6“, 如图4-8(d)所示。  ③ 依次光滑连接各点的投影, 并判别可见性, 完成相贯线的投影。最后注意,圆锥台左视轮廓素线画到2“、4“两点,球体左视轮廓素线上有一段虚线, 如图4-8(e)所示。,图4-8 球体与圆锥台的相贯线,图4-8 球体与圆锥台的相贯线,图4-8 球体与圆锥台的相贯线,图4-8 球体与圆锥台的相贯线,图4-8 球体与圆锥台的相贯线,从这个例子我们应该掌握辅助平面法的两个要点: ① 辅助平面法的实质, 是求辅助平面分别截两立体所得截交线的交点。 ② 辅助平面位置选取的原则,是使辅助平面分别截两立体所得截交线的形状最简单(直线和圆),以便用工具作图。,[例4-6] 求轴线正交的水平圆柱与直立圆锥的相贯线, 如图4-9(a)所示。 (1) 空间及投影分析: 由于水平圆柱的侧面投影有积聚性, 相贯线的侧面投影与其重合, 因此只需求相贯线的水平投影和正面投影。该相贯线为前后对称的空间曲线, 故其正面投影的可见与不可见部分重合。又因圆锥轴线垂直于H面, 所以只有选取辅助水平面, 才能使两截交线的形状简单。,(2) 作图(图 4 - 9(b)):  ① 求作特殊点。两立体主视轮廓素线相交, 它们是相贯线上的点, 其中交点Ⅰ(1、 1′、 1″)是最高点, 交点Ⅱ(2,2′, 2″)是最低点, 也是最左点; 然后通过圆柱轴线作辅助平面P, 平面P与圆锥的截交线为水平圆, 与圆柱的截交线为俯视轮廓素线, 此两截交线的交点Ⅲ(3、 3′、 3″)为最前点, 交点Ⅳ(4、 4′、4″)为最后点;最右点可用向圆锥素线作垂线的方法确定辅助平面R的位置, 并求出最右点5″、 6″, 然后得到5、6和5′(6′)点。,② 求一般点。 为了有足够的点满足连线的需要, 可在适当位置再作辅助水平面S等, 找出一般点Ⅶ(7、 7′、 7″)、 Ⅷ(8、 8′、 8″)等点。 ③ 光滑连接并判别可见性。注意,3、4两点是相贯线水平投影可见与不可见的分界点, 圆柱俯视轮廓素线应一直画到3、4点为止。 ,图4-9 圆柱与圆锥相交,上述两例告诉我们求解相贯线的方法和步骤: 首先要分析相交形体的几何形状, 以及它们之间的位置关系; 其次是按三步作图, 从已知投影出发, 先求特殊点(最高、最低 , 最前、最后 , 最左、 最右以及轮廓素线上的点), 然后用辅助平面法求出若干一般点(有时也用来求某个特殊点), 最后用光滑曲线顺序连接并判断可见性。 由以上讨论可知:相贯线的形状与两立体的几何形状、尺寸大小及相对位置均有关。以两圆柱轴线正交为例,其相贯线的变化如图 4 - 10 所示。,图4-10 尺寸变化对相贯线的影响,三、两圆柱轴线正交时相贯线的简化画法,图4-11 相贯线的简化画法,四、相贯线的特殊情况,相贯线为平面曲线 (1) 相贯线是圆:,图4-12 共轴回转体的相贯线,(2) 相贯线是椭圆:,图4-13 相贯线为椭圆,2. 相贯线为直线,图4-14 相贯线为直线,,4.3 多个立体相交,[例4-7] 画出图4-15(a)所示组合体的投影图。  (1) 空间分析: 这里有三个圆柱A、B、C相交。圆柱A、B同轴且轴线为侧垂线;轴线为铅垂线的圆柱C与圆柱A、B垂直相交;圆柱B的底面与圆柱C相交。A、C的相贯线和B、C的相贯线都是空间曲线, 而圆柱B的底面和圆柱C的截交线是两条直线段。 ,(2) 作图: 先求圆柱A、C和B、C间的相贯线。二相贯线的水平投影重影在圆柱C的水平投影上, 二侧面投影分别重影在圆柱A、B的两段弧线上, 利用积聚性很容易求出它们的正面投影3′2′1′及4′5′(因前后对称, 只需画前半部可见部分)。 再作圆柱B的底面与圆柱C的截交线。圆柱B的底面是一侧平面, 所以该截交线是两条垂直于水平面的直线段, 其水平投影重影在4(3)和6(7)两点, 正面投影为3′4′及(6′)(7′), 只要画出其侧面投影(3“)(4“)、 (6“)(7“)就可以了, 注意它们均不可见。 最后的投影图, 如图4-15(b)所示。,图4-15 多个立体相贯,[例4-8] 作图4-16所示连杆的投影图。  (1) 空间分析:连杆左端是半球体, 中部大圆柱与其光滑衔接, 右端是小圆柱及小圆锥台(倒角)。现用铣刀铣出了前后两个正平面, 并在大圆柱上留下了铣刀的圆角。可将交线分成三部分:Ⅰ是平面截半球, 截交线是半圆;Ⅱ是平面截圆柱, 截交线是两条直线段;Ⅲ相当于圆柱形铣刀与大圆柱相贯, 由于铣刀和圆柱轴线垂直但不相交,因此这一段相贯线是空间曲线。右端小圆柱及小圆锥台均未参予相贯。 如图4-16(a)所示。,(2) 作图: 为了清晰起见, 将连杆左端部分放大作图, 见图4-16(b)。  Ⅰ、Ⅱ部分是前后两个正平面截半圆球及圆柱体, 其侧面投影与水平投影积聚为二条直线段;Ⅲ的水平投影是部分圆弧, 其侧面投影重影为两侧的弓形。需要画的是Ⅰ、Ⅱ、Ⅲ的正面投影, 因连杆前后对称, 只要画出前半部可见部分。Ⅰ部分交线的正面投影可由水平投影量取半径画半圆得到;Ⅱ部分两条直线切于该半圆而平行于轴线;Ⅱ、Ⅲ两部分的结合点为2′、3′, 它们也是右端相贯线的最左点, 相贯线的最右点由水平投影1得到, 并对应求得1′点。至于一般点可由积聚性求出:在水平投影上任取4(5), 根据点的投影规律求出4“、 5“; 从而得到4′、5′;光滑连接2′4′1′5′3′, 就是Ⅲ部分相贯线的正面投影。把Ⅰ、 Ⅱ、Ⅲ部分综合起来, 即为连杆相贯线完整的正面投影。,图4-16 连杆相贯线分析,, 关 键 词: 工程 制图 计算机 绘图

4d91c43bfc72ca913299809b07b4968f.gif  天天文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值