智能建筑与物联网:创新与应用

背景简介

随着物联网技术的发展,智能建筑的概念越来越受到重视。智能建筑通过集成各种传感器、控制器和执行器,实现对环境的自动监控和调整。本文探讨了物联网技术在智能建筑中的应用,特别是优化控制系统的网络实现以及如何利用机器学习技术来优化能源消耗。

网络化实施的优化控制系统

优化控制系统是智能建筑节能的重要组成部分。通过深度神经网络(DNN)和粒子群优化(PSO)函数,可以在管理层计算机上开发出控制策略,这些策略通过网络发送到自动化级控制器,由其执行。这样的控制系统不仅能够利用现有的网络结构,还能适应各种不同的网络环境,如局域网(LAN)、互联网、无线链接、电缆或串行连接。

控制系统架构

优化控制系统通常包含多个层级,包括管理层、自动化层和现场层。管理层负责制定控制策略,自动化层则根据这些策略对HVAC组件进行本地控制。此外,如果自动化层无法直接访问某些设备,可以通过路由器或网关建立连接。一个典型的例子是通过LonWorks或BACnet总线连接传感器、执行器和房间控制器等HVAC组件。

商业产品示例 – BrainBox AI

BrainBox AI是一个商业上可用的基于机器学习的产品,它能够在不同环境条件下帮助利益相关者减少实际能源消耗15%至25%。该系统直接连接到建筑的HVAC系统,并将其转变为预测性和自适应的系统,利用现有的楼宇管理系统的数据以及第三方来源,如天气和占用情况,来做出决策。

技术背景

HVAC系统在商业建筑中占据能源消耗的重要部分,因此优化其能源使用具有很大的价值。BrainBox AI使用高级深度学习模型,无需人工干预即可实时控制HVAC系统,从而减少服务电话数量并提高净运营收入。

AI系统的技术优势

与传统PID控制回路相比,BrainBox AI系统通过预测性控制实现更高效的能源管理。这种系统能够预测不舒适的温度并采取预防性行动,从而减少能量的消耗。例如,在面临温度波动时,传统的系统必须等待温度变化发生后再进行反应,而AI系统则能够利用预测的温度数据进行相应的调整,避免不希望的高温或低温。

商业利益

AI系统不仅提高了建筑的能源效率,还带来了商业上的好处。它能显著减少能源成本、提高设备的使用寿命、改善室内舒适度,并对环境可持续性产生积极影响。通过接入AI系统,建筑可以实现碳排放减少、符合能源效率和排放限制,并提高设备的服务寿命。

总结与启发

智能建筑和物联网技术的结合为建筑能源管理提供了新的机遇。通过优化控制系统和深度学习技术的应用,不仅可以实现能源消耗的显著减少,还能提高建筑的舒适度和运营效率。BrainBox AI作为一个商业产品,其成功案例展示了在实际环境中应用机器学习技术来优化能源消耗和成本的潜力。随着技术的不断进步和应用的不断深化,未来的智能建筑将会更加节能高效,为人们提供更加舒适、可持续的生活环境。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值