自然是奇特的,蜜蜂似乎对于打蜡和塑造蜂窝具有十分优雅的建筑观,对对称的结构了如指掌。大家仔细观察蜂窝的结构,会发现里面是一个个六边形的小室。为什么是六边形?六边形有什么优点?
年轻的工蜂在蜂蜜上茁壮成长,慢慢地排出蜡条,每条蜡的斑点大小都相当于针头大小。其他工人则收获这些微小的蜡点,然后小心地放置并成型,以装配六面或六边形单元的垂直梳子。蜜蜂大量聚集,保持蜂巢温度为35摄氏度,这使密蜡保持牢固,并使蜂巢具有延展性。

蜂窝猜想
蜜蜂这种活动产生了一个坚固,非常精确的结构。每个蜡分间隔(小于0.1毫米厚)的公差为0.002毫米。此外,所有的单元壁彼此之间都以正确的120度角站立,以形成规则六边形的格子。
自古以来,每个人都对蜜蜂精心制作的存储系统的六边形图案感到惊讶。2000多年前,希腊学者对蜜蜂显然具有“某种几何构想”的观点进行了评论,当时人们认为这些蜜蜂仅能获得正确类型的图案以有效地保存蜂蜜。19世纪,查尔斯·达尔文将蜂窝描述为“在节省劳动力和蜡方面绝对完美的”工程杰作。

生物学家认为,蜜蜂是为了将用来制造蜂巢的蜡的量降至最低。但是,由正六边形组成的网格确实是最佳选择吗?例如,如果墙壁是弯曲的而不是平坦的,该怎么办?
密歇根大学安阿伯分校的数学家托马斯·C·海尔斯已经提出了所谓的蜂窝猜想的证明,该猜想认为六角形网格是将表面划分为面积最小,且总面积最小的最佳方法。现在已成为蜂窝定理。
在证明蜂窝猜想之前,海尔斯证明了约翰尼斯·开普勒的猜想,即在超市中将排列整齐的橘子堆紧密包装成相同球体是最佳方法,最节省空间。

尽管蜂窝单元是三维结构,但每个单元在垂直于其底部的方向上都是均匀的。因此,在计算构造蜂窝需要多少蜡时,其六角形横截面比其它因素更重要。
因此,数学家的蜂窝猜想涉及到二维模式,就像工人正在创建一个网格来铺设瓷砖以覆盖无限宽的浴室地面一样。
为什么不是三角形或正方形
古希腊的数学家问,如果蜜蜂想将平坦的表面划分为相同的,等边的小室,它们可能会有什么选择?只有三个规则的多边形紧密地堆积在一起而不会留有间隙:等边三角形,正方形和正六边形。其它多边形(例如五边形和八边形)的单元格之间很容易产生缝隙。那么,为什么蜜蜂不选择等边三角形,正方形呢?
希腊人断言,如果使用相同数量的蜡制分别制作三角形,正方形,六边形的小室,则六边形单元将比三角或方形单元容纳更多的蜂蜜。也就是说,在给定的区域内,六边形单元的周长小于正方形或三角形单元的周长。于是蜂蜜可以节省材料。

然而,可以想到单元格的其它可能性。即便是六边形也有无数种,但是蜜蜂选择了内角都为120度的六边形。
对这些可替代的形状进行分类,对数学家来说是一项艰巨的任务。
具有相等边和120度角的正六边形的周长比相同区域的任何其它六边形图形的周长相对少一些。此外,边多于六边形的多边形(例如正八边形)效果更好,边数少的多边形(例如正方形)效果更差。
1943年,匈牙利数学家证明了蜂窝猜想。在平面填充模式中,每个单元的平均边数最多为6个。而且,当边数大于六时,产生的优点比边数小于六时的缺点还少,在这种条件下,包围和分隔无限多个相等面积区域的最小周长方法是蜂窝的规则六边形网格。
如果允许单元格具有弯曲的侧面怎么办?数学家考虑了这个问题,并预测最佳答案仍然是规则六边形的网格。

蜂窝猜想可以用于生活上,例如超市最经济的包装方式是一对相同体积的双气泡。在《美国数学学会的五月交易》中,数学家概述了证明六角形蜂窝猜想及其变体的进展。
对于弯曲的六边形侧面,复杂之处在于,一个单元格向外突出的一侧必须向其直接相邻的一侧突出。
海尔斯证明了凸出的优点少于凸出的缺点。如果各种多边形的侧面都弯曲了,在同等条件下,六角形的单元格表现得更好。就是瘸子当中也有将军。
因此,直角多边形比弯曲多边形更好,而正六边形确实是所有多边形中最好的。

蜜蜂的蜂巢结构朝下
但是,除了垂直的六边形网格之外,蜂窝还有更多其它功能。它实际上由两层背靠背放置的单元组成。单元格本身与水平方向成大约13度的角度向上倾斜,刚好足以防止储存的蜂蜜滴落。
每个单元格的底部不是平坦的,而是以三个四边形菱形面板结尾。两层的单元是偏移的,因此一侧的腔室的中心是另一侧的三个相邻单元的角。这样可以使蜂窝各层像安装在一起的两个鸡蛋纸箱的底部那样互锁。然而,在蜂窝中,一层材料用作两个单元的底部。在横截面中,两层之间的界面具有锯齿形结构。

蜂窝单元底部的每个菱形或菱形面的角度分别为109.5和70.5。18世纪,数学家证明了这些特殊的角度可为三菱形配置提供最大的体积。
对数学家来说,许多问题仍然悬而未决。
例如,在二维中,单元格的最小面积和最小周长问题已经解决。在三维上,大小相同的单元的最小空间填充结构具有最小表面积的问题仍未解决。
这些问题不仅涉及数学,而且涉及对流体,气泡,泡沫,晶体以及从细胞组合到植物组织的各种生物结构的特征。
细胞和组织,壳和骨骼,叶和花是物质的大多部分,并且服从物理定律,它们的粒子已经被移动,模制和整合。问题首先是数学问题,本质上是物理问题。
蜜蜂的蜂巢整齐地适合自然界中数学上最佳形式的地图集。

但是数学家的解释完美么?有人提出了质疑
数学家的解释适用于二维结构,而实际的蜂窝是三维的。
也就是上文所说的尚未解决的三维问题,但是数学家的蜂窝定理只适用于二维。
将平面划分成相等面积的任何区域,其周长至少要等于规则的六角形蜂窝平铺的周长。但是,蜜蜂的蜂窝是一种三维结构,不会减少到二维情况。我们应该寻找的是一种可以应用于实际蜂窝而不是二维的最佳三维结构。简而言之,该结构应使相对于单元格体积的表面积最小化,而不是相对于面积的周边最小化。
虽然将蜂窝视为二维优化问题并不是先天不合理的,但是经过仔细检查,事实证明这是有问题的。例如,如果蜂窝仅由一层薄薄的六边形隔室组成,则二维描述可能会合理。然而,蜂窝具有不平凡的三维结构。关键是实际结构分为两层,因此单元仅在一端开放。这就是为什么我们无法在两个维度上说明菱形帽的形状。蜂窝不适合二维表示的情况,因此必须使用第三维来表示结构的这一方面。

那么我们如何优化这个问题?
优化问题必须满足一定的边界条件。其中之一是每个单元都需要一个合理大小的开口。该问题的一种可能的数学表达形式是开尔文问题的有界形式,即具有相等体积的单元格的最佳空间平铺,其限制是单元格位于两个平行平面之间,以使每个单元格具有开口。
此外,可能必须考虑壁的厚度。当然,纯数学上的考虑是行不通的。蜜蜂是从头到尾构造蜂箱,还是涉及其它过程程?这些问题在生物学文献中仍存在争议。最后,蜂窝的结构稳定性也要考虑在内。
但是,结构是三维的,也可以转化为其它结构问题,也可以解释整个结构的形状。因此,一种方法是证明三维结构具有其形状的原因包含了其它结构。或者换句话说,三维结构最优性的证明在某种程度上必须考虑二维情况下的证明。目前尚不清楚二维和三维之间的这种关系是合理的还是可以建立的。

可以确定的是,开口的六边形不必一定是三维结构的最佳化的结果,因为生物学的要求是蜂窝的孔具有二维形状的开口六边形网格。然后将这种结构假定为一种边界条件,以实现整个三维结构的最佳化是合理的。
蜂窝结构在计算机上的应用
即便蜂窝为何是六边形的问题在三维空间上还未得到详细解决,但是蜂窝结构已经被应用在很多地方了。平常超市货物的摆放,鸡蛋盒的制作,都用到了蜂窝结构。更厉害的是,计算机上也应用了蜂窝结构。

受蜂箱中六角形梳齿的几何形状启发,由于重复的几何形状对于降低生产成本非常重要,因此计算机领域详细研究了蜂窝结构,并将其定义为无扭转结构,其中单元壁相交120度。有趣的是,蜂窝结构在计算和建模上有很大用处,例如用于着色系统或四边形网格划分,也在多面体或其它形式的更广泛主题有贡献。这样的图案需要在技术水平上采用新方法,例如光滑度方面,但是它们也扩展了我们对构成美学自由形式几何形状的看法。
这里介绍一种用法。
给定具有任何连通性的基础网格M,基于M计算无扭转结构,需要我们为每个边缘分配一个平面,以便每个顶点节点周围的平面以一条直线相交,这称为节点轴。在该结构的实际实现中,光束相对于边缘平面对称放置。

对于三角形网格,无扭转支撑结构的自由度非常小,对于应用程序来说很不友好。这是因为所有节点轴都需要经过一个固定点。对于具有平面的网格,可通过平行网格的概念来访问它们。对于四重网格,支持结构与离散线全等有关。但这不适用于基于具有非平面的六边形网格的蜂窝结构。
可以从具有圆堆积特性的三角形网格派生特殊的六方无扭转结构,这些三角形网格配备了以顶点为中心的球体堆积。球体在接触点处的切平面形成无扭转的六角结构,如果所有球体的大小相同,则将是具有120度相交角的蜂窝。因此,此类网格有利于网络应用。

大自然是神秘的,蕴藏着很多数学秘密,同时自然的结构也在人们的生活领域散发出无尽的应用。