tensorflow-GPU安装,及简版(亲测有效) TensorFlow-GPU安装问题总结:安装TensorFlow-GPU需要卸载Python编译器和CPU版本的TensorFlow吗?安装完毕GPU后,怎么安装其他库?如何验证是否安装成功GPU?运行代码时找不到指定的GPU?
python使用matplotlib绘制热图 # 定义热图的横纵坐标 xLabel = ['A', 'B', 'C', 'D', 'E'] yLabel = ['1', '2', '3', '4', '5'] # 准备数据阶段,利用random生成二维数据(5*5) data = [] for i in range(5): temp = [] for j in range(5): k = random.randint(0, 100)
python特殊函数 __call__()和__init__()和__new__() __init__方法在Python中,init()函数的意义等同于类的构造器(同理,del()等同于类的析构函数)。因此,init()方法的作用是创建一个类的实例。call 方法关于 call 方法,不得不先提到一个概念,就是可调用对象(callable),我们平时自定义的函数、内置函数和类都属于可调用对象,但凡是可以把一对括号()应用到某个对象身上都可称之为可调用对象,判断对象是否为可调用对象可以用函数 callable。如果在类中实现了 call 方法,那么实例对象也将成为一个可调用对象。Pyt
LSTM学习 学习LSTM需要通过五大问题来全面的理解:为什么会出现LSTM?LSTM是怎么解决RNN梯度消失的问题的?LSTM的主要内容是什么?LSTM如何代码实现?LSTM现在发展到什么地步(即有哪些变体)?通过这五个问题,了解LSTM的前世今生。
TensorFlow的环境配置与安装 TensorFlow是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算法库DistBelief。Tensorflow拥有多层级结构,可部署于各类服务器、PC终端和网页并支持GPU和TPU高性能数值计算,被广泛应用于谷歌内部的产品开发和各领域的科学研究 。本文将介绍TensorFlow的安装与环境配置
Python爬虫之猫眼APP电影数据(十八) 一声响指,宇宙间半数生命灰飞烟灭。几近绝望的复仇者们在惊奇队长(布丽·拉尔森 饰)的帮助下找到灭霸(乔什·布洛林 饰)归隐之处,却得知六颗无限宝石均被销毁,希望彻底破灭......,今天我们就来用Python爬取猫眼的电影数据
径向基(Radial Basis Function:RBF)神经网络学习笔记 RBF神经网络是为了解决大部分基于反向传播的多层前馈网络的学习算法必须基于某种非线性优化技术的缺点 ,计算量大、学习速度慢的问题。RBF通过使用高斯和函数的方法,使得,网络由输入到输出的映射是非线性的,而网络输出对可调参数而言却又是线性的。网络的权就可由线性方程组直接解出,从而大大加快学习速度并避免局部极小问题。
BP(Back Propagation)神经网络学习笔记 BP神经网络算法是在BP神经网络现有算法的基础上提出的,是通过任意选定一组权值,将给定的目标输出直接作为线性方程的代数和来建立线性方程组,解得待求权,不存在传统方法的局部极小及收敛速度慢的问题,且更易理解。
机器学习(十五)-DBSCAN算法及Python实例 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法。与划分和层次聚类方法不同,它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪声的空间数据库中发现任意形状的聚类。什么是基于密度的聚类算法?直白翻译就是带有噪声应用的基于密度的空间聚类。
什么是机器学习 转载:博文计算机的潜意识之从机器学习谈起,原文请点击链接(https://www.cnblogs.com/subconscious/p/4107357.html)强烈推荐一篇关于机器学习入门导论的博文,里面的内容非常详实,加上作者的理解和感悟精华出来的一篇佳作。我从里面抽取出一些重点的内容,在此记录,强烈推荐大家,点击访问上面的那篇文章。1 机器学习的定义从广义上来说,机器学习是一种能够赋...