广义欧拉定理+打表 - Last Digits(POJ2720)

传送门


Analysis

好啊。。。。
看起来蛮递归降幂,蛮容易
hhhh……时间过不去

原来要打表还要记录(多组数据)
因为指数与模数不一定满足互质,所以在降幂的时候要分类讨论(指数是否大于φ(mod))
由于直接讨论不知道怎么做
所以……1e7以下的打表算出来
剩下的讨论即可


Code
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cmath>
#include<iomanip>
#define int long long
#define re register
using namespace std;
typedef long long ll;
int base[10]={1, 10, 100, 1000, 10000, 100000, 1000000, 10000000};
int tab[105][105];
int fxb[105][105];
inline int limit_power(int a,int b){
	ll res=1;
	for(re int i=1;i<=b;++i){
		res=res*1ll*a;
		if(res>1e7) return -1;
	}
	return res;
}
void init(){
	memset(tab,-1,sizeof(tab));
	memset(fxb,-1,sizeof(fxb));
	for(re int i=1;i<=100;++i){
		tab[i][0]=fxb[i][0]=1;
		for(re int j=1;j<=100;++j){/
			tab[i][j]=fxb[i][j]=limit_power(i,fxb[i][j-1]);
			if(tab[i][j]==-1) break;
		}
	}
}
inline ll ksm(int x,int b,int mod){
	ll res=1;
	while(b){
		if(b&1) res=res*x%mod;
		x=x*x%mod;
		b>>=1;
	}
	return res;
}
inline int get_phi(int x){
	int ans=x;
	for(re int i=2;i*i<=x;++i){
		if(x%i==0){
			ans=ans/i*(i-1);
			while(x%i==0) x/=i;
		}
	}
	if(x>1) ans=ans/x*(x-1);
	return ans;
}
int solve(int b,int a,int mod){
	if(fxb[b][a]!=-1) return fxb[b][a]%mod;//
	int phi=get_phi(mod);
	if(fxb[b][a-1]!=-1&&fxb[b][a-1]<=phi)
		return ksm(b,fxb[b][a-1],mod);
	return ksm(b,solve(b,a-1,phi)+phi,mod);
}
signed main(){
	int b,x,n;
	init();
	while(1){
		scanf("%lld",&b);
		if(!b) return 0;
		scanf("%lld%lld",&x,&n);
		int res;
		if(tab[b][x]==-1){
			tab[b][x]=solve(b,x,1e7);
			res=tab[b][x]%base[n];
		}
		else res=tab[b][x]%base[n];
		cout<<setfill('0')<<setw(n)<<res<<'\n';
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值