Analysis
好啊。。。。
看起来蛮递归降幂,蛮容易
hhhh……时间过不去
原来要打表还要记录(多组数据)
因为指数与模数不一定满足互质,所以在降幂的时候要分类讨论(指数是否大于φ(mod))
由于直接讨论不知道怎么做
所以……1e7以下的打表算出来
剩下的讨论即可
Code
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cmath>
#include<iomanip>
#define int long long
#define re register
using namespace std;
typedef long long ll;
int base[10]={1, 10, 100, 1000, 10000, 100000, 1000000, 10000000};
int tab[105][105];
int fxb[105][105];
inline int limit_power(int a,int b){
ll res=1;
for(re int i=1;i<=b;++i){
res=res*1ll*a;
if(res>1e7) return -1;
}
return res;
}
void init(){
memset(tab,-1,sizeof(tab));
memset(fxb,-1,sizeof(fxb));
for(re int i=1;i<=100;++i){
tab[i][0]=fxb[i][0]=1;
for(re int j=1;j<=100;++j){/
tab[i][j]=fxb[i][j]=limit_power(i,fxb[i][j-1]);
if(tab[i][j]==-1) break;
}
}
}
inline ll ksm(int x,int b,int mod){
ll res=1;
while(b){
if(b&1) res=res*x%mod;
x=x*x%mod;
b>>=1;
}
return res;
}
inline int get_phi(int x){
int ans=x;
for(re int i=2;i*i<=x;++i){
if(x%i==0){
ans=ans/i*(i-1);
while(x%i==0) x/=i;
}
}
if(x>1) ans=ans/x*(x-1);
return ans;
}
int solve(int b,int a,int mod){
if(fxb[b][a]!=-1) return fxb[b][a]%mod;//
int phi=get_phi(mod);
if(fxb[b][a-1]!=-1&&fxb[b][a-1]<=phi)
return ksm(b,fxb[b][a-1],mod);
return ksm(b,solve(b,a-1,phi)+phi,mod);
}
signed main(){
int b,x,n;
init();
while(1){
scanf("%lld",&b);
if(!b) return 0;
scanf("%lld%lld",&x,&n);
int res;
if(tab[b][x]==-1){
tab[b][x]=solve(b,x,1e7);
res=tab[b][x]%base[n];
}
else res=tab[b][x]%base[n];
cout<<setfill('0')<<setw(n)<<res<<'\n';
}
return 0;
}