
深度学习
文章平均质量分 67
燕~_~
这个作者很懒,什么都没留下…
展开
-
深度学习框架之《数据增强》
pytorch篇数据增强torchvision.transforms,举例如下:import torchvision.transforms as transformsdata_transforms = transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), trans原创 2021-01-28 20:20:03 · 201 阅读 · 0 评论 -
需掌握的深度学习知识
一、权重衰减与学习率衰减https://blog.csdn.net/program_developer/article/details/80867468原创 2020-10-09 11:16:23 · 304 阅读 · 0 评论 -
cudn安装
查看适合的cuda版本nvidia控制面板->帮助->系统信息->组件原创 2020-08-10 22:08:38 · 650 阅读 · 0 评论 -
数据预处理方式
1. 去均值操作:各维度都减对应维度的均值,使得输入数据各个维度都中心化为0原因:如果不去均值的话会容易拟合。 这是因为如果在神经网络中,特征值x比较大的时候,会导致W*x+b的结果也会很大,这样进行激活函数(如relu)输出时,会导致对应位置数值变化量太小,进行反向传播时因为要使用这里的梯度进行计算,所以会导致梯度消散问题,导致参数改变量很小,也就会易于拟合,效果不好。其他:有的说去均值是为了对图像进行标准化,可以移除图像的平均亮度值 (intensity)。很多情况下我们对图像的照度并不感兴趣原创 2020-07-22 17:01:02 · 472 阅读 · 0 评论