java flowable_RxJava流控机制之Flowable

本文详细探讨了RxJava 2.x中的Flowable流控机制,特别是Flowable的创建过程和背压策略。通过分析Flowable的`create`方法和`subscribeActual`,揭示了默认的`BackpressureStrategy.BUFFER`策略如何处理生产者和消费者速度不匹配的问题。Flowable使用SpscLinkedArrayQueue作为缓冲队列,当生产者速度大于消费者时,会自动扩容。`drain`方法负责消费事件,根据请求量进行消费并确保线程安全。
摘要由CSDN通过智能技术生成

背景

对于生产者和消费者模型,存在一个问题就是当生产者生产的速度大于消费者消费速度,并且生产过程不会停止,生产者和消费者位于不同的线程中,这是要如何对待多余出来的生产内容?是丢掉,是缓冲?

在强大的异步处理框架中,RxJava又是怎么处理的呢?如果在工作中万一发生丢包事件怎么办?

使用环境与本文目的

RxJava版本:2.1.0

默认条件:观察者和被观察者位于main线程中,且使用了默认的事件发射器。

目的:通过Flowable,探究RxJava的流控机制。

Flowable创建过程

Flowable flowable = Flowable.create(new FlowableOnSubscribe() {

@Override

public void subscribe(FlowableEmitter e) throws Exception {

for(int i =0 ; i<10;i++){

e.onNext(i);

}

}

}

, BackpressureStrategy.BUFFER);

在create方法中,完成了对Flowable的构建过程:

public static Flowable create(FlowableOnSubscribe source, BackpressureStrategy mode) {

ObjectHelper.requireNonNull(source, "source is null");

ObjectHelper.requireNonNull(mode, "mode is null");

//在工厂中构建出一个Flowable对象。需要传入对向FlowableCreate

//如果要构建Observable,则传入的是ObservableDefer

return RxJavaPlugins.onAssembly(new FlowableCreate(source, mode));

}

FlowableCreate实际上是Flowable子类。当调用Flowable的subscribe方法时,实际上将执行FlowableCreate中的subscribeActual(该方法在Flowable是一个抽象方法,在FlowableCreate中实现)方法:

public final void subscribe(FlowableSubscriber super T> s) {

ObjectHelper.requireNonNull(s, "s is null");

try {

Subscriber super T> z = RxJavaPlugins.onSubscribe(this, s);

ObjectHelper.requireNonNull(z, "Plugin returned null Subscriber");

subscribeActual(z);

}

......

subscribe过程分析

实际执行的是subscribeActual,这个方法非常重要,该方法的实现为:

BaseEmitter emitter;

switch (backpressure) {

case MISSING: {

emitter = new MissingEmitter(t);

break;

}

case ERROR: {

emitter = new ErrorAsyncEmitter(t);

break;

}

case DROP: {

emitter = new DropAsyncEmitter(t);

break;

}

case LATEST: {

emitter = new LatestAsyncEmitter(t);

break;

}

default: {

emitter = new BufferAsyncEmitter(t, bufferSize());

break;

}

}

t.onSubscribe(emitter);

try {

source.subscribe(emitter);

} catch (Throwable ex) {

Exceptions.throwIfFatal(ex);

emitter.onError(ex);

}

我们可以看到:

它首先会根据我们选择的背压模式,设置不同的emitter;如果没有设置,默认将开启带有缓存的emitter;

Subscriber中的onSubscribe在事件没有发射前就执行了;

事件的发射,是通过source.subscribe(emitter)实现的,而这个source,实际上就是我们在构建Flowable时创建的FlowableOnSubscribe。

现在回过来我们看看在构建时,FlowableOnSubscribe的内容,通常我们会这么写:

new FlowableOnSubscribe() {

@Override

public void subscribe(FlowableEmitter e) throws Exception {

for(int i =0 ; i<10;i++){

e.onNext(i);

}

}

}

转了一圈,又回到了这里。FlowableEmitter来发射事件。默认的,将使用BufferAsyncEmitter,这是一个支持背压处理的Emitter。

该Emitter中,onNext方法是这样的:

@Override

public void onNext(T t) {

if (done || isCancelled()) {

return;

}

if (t == null) {

onError(new NullPointerException("onNext called with null. Null values are generally not allowed in 2.x operators and sources."));

return;

}

queue.offer(t); //生产

drain(); //实际消费过程会执行queue.poll

}

我们看到,queue就是它维护的一个SpscLinkedArrayQueue队列(其中使用的大量的原子类型处理多线程访问问题),队列容量会根据生产消费情况自动扩容。

生产过程,或者说事件发射过程,直接调用了队列的offer方法,进行入队操作;

消费过程,或者说消费事件,则是先使用了drain方法,该方法的本质,是执行队列的poll方法取出事件,然后在onNext()中消费。

在 offer 中主要完成生产:

//producerLookAhead相当于一个生产者的斥候,主要用于检测边界

//这里将检测,要插入的位置,是否已经越界了

if (index < producerLookAhead) {

return writeToQueue(buffer, e, index, offset);

}

//else这种情况,主要时考虑到循环队列

else {

//producerLookAheadStep实际上是一个定值,表示固定步长

final int lookAheadStep = producerLookAheadStep;

// go around the buffer or resize if full (unless we hit max capacity)

//首先检查前进了固定步长之后,是否还有位置用来插入,注意,使用calcWrappedOffset方法,

//包括很多其他用到mask的地方,实际上是将数组作为一个循环队列使用。

//如果前进固定步长之后,还可以插入,那么,说明生产者可用空间还有很多

int lookAheadElementOffset = calcWrappedOffset(index + lookAheadStep, mask);

if (null == lvElement(buffer, lookAheadElementOffset)) { // LoadLoad

producerLookAhead = index + lookAheadStep - 1; // joy, there's plenty of room

return writeToQueue(buffer, e, index, offset);

}

//检查下一插入位是否为空,如果不为空,则使用 ;

//反之,插入位已经满了,需要创建一个新的数组以完成生产者的工作

else if (null == lvElement(buffer, calcWrappedOffset(index + 1, mask))) { // buffer is not full

return writeToQueue(buffer, e, index, offset);

} else {

//现有数组容量已经满了,消费者速度无法跟上生产者速度,

//需要开辟一块新的空间用于生产。空间大小和现有数组大小一致。

//这里将完成对已经生产并且尚未消费的数组进行保存的工作;

//同时,开辟一个新的数组,用于生产

resize(buffer, index, offset, e, mask); // add a buffer and link old to new

return true;

}

}

在poll中主要完成事件取出,以在onNext中消费:

public T poll() {

// local load of field to avoid repeated loads after volatile reads

final AtomicReferenceArray buffer = consumerBuffer;

final long index = lpConsumerIndex();

final int mask = consumerMask;

final int offset = calcWrappedOffset(index, mask);

final Object e = lvElement(buffer, offset);// LoadLoad

boolean isNextBuffer = e == HAS_NEXT;

if (null != e && !isNextBuffer) {

//取出发射的事件,进行消费

soElement(buffer, offset, null);// StoreStore

soConsumerIndex(index + 1);// this ensures correctness on 32bit platforms

return (T) e;

} else if (isNextBuffer) {

//如果这个数组中所有元素已经消费完,同时生产者已经不再这个数组中进行生产工作;

//跳转到新的数组中,完成消费工作,同时,移除当前数组,即放弃这块空间,不再使用

return newBufferPoll(lvNext(buffer), index, mask);

}

return null;

}

本质上将,生产和消费就是在操作这样一个队列。

现在,可以回过头来,重新看一看上面的 drain() 方法,看看它具体的消费过程,这个方法很有意思。

drain:

void drain() {

//保证同时只能有一个线程操作进行下面的循环

//注意在该方法的末尾,对wip进行了重置为-1,打开进行循环的权限

if (wip.getAndIncrement() != 0) {

return;

}

int missed = 1;

final Subscriber super T> a = actual;

//无限队列,本质上有很多个固定长度的数组自动扩展构成

final SpscLinkedArrayQueue q = queue;

//死循环

for (;;) {

//得到请求的数量,该值是通过Subscription.request()设置的,

//而这个方法,Subscription参数,实际上在Subscriber的onSubscribe传递进去。

//所以,这也就是为什么,要在subscriber中request(num), num为多少,就消费多少。

//这个请求对于外界来说,只能通过subscription设置

long r = get();

long e = 0L;

//如果请求量为0,不进入循环进行消费

while (e != r) {

if (isCancelled()) {

q.clear();

return;

}

//用来判断是否执行了onComplete或者onError

boolean d = done;

T o = q.poll();

boolean empty = o == null;

//如果事件全部消费完,之后执行了onCopmlete或者onError

if (d && empty) {

Throwable ex = error;

if (ex != null) {

super.onError(ex);

} else {

super.onComplete();

}

return;

}

//如果事件全部消费完,跳出本次循环

//注意,此时空转了。如果消费者速度大于生产者速度,会发生这次空转,同时继续循环过程

if (empty) {

break;

}

//消费事件

a.onNext(o);

//处理完一件事情,计数器加一

e++;

}

if (e == r) {

if (isCancelled()) {

q.clear();

return;

}

boolean d = done;

boolean empty = q.isEmpty();

if (d && empty) {

Throwable ex = error;

if (ex != null) {

super.onError(ex);

} else {

super.onComplete();

}

return;

}

}

//上一次request的量已经全部完成,此时重置请求量

if (e != 0) {

BackpressureHelper.produced(this, e);

}

//开锁

missed = wip.addAndGet(-missed);

if (missed == 0) {

break;

}

}

}

总结

上述的分析过程,实际上并没有设置观察者、 被观察者于不同的线程,且使用默认的事件发射器。缓冲队列的空间是无限大的(一旦当前缓冲被使用完,则开辟新的缓冲空间,直到这个空间的容量达到了 long 类型的最大值,或者内存溢出)。

这种背压方式,需要观察者或者消费者主动请求要处理的事件的数量,已达到流速控制。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值