所谓数独,就是将1到9的自然数填入一个9行9列的表格,根据已知的部分数字推理出所有剩余空格的数字,并满足每一行、每一列、每一个粗线宫(3*3)内的数字均含1-9,不重复。基本的表格如下图所示:

将粗线条内的9个表格称为9个宫。
题目(超5星难度):如图,完成下面的数独表格,使每行每列和每宫中都含有1到9的9个不同自然数。

讲解思路:
数独问题的本质是逻辑推理问题,是要在满足9个数不同的条件下,不断推理出剩余的数。因此,每一步的关键是判断条件,解题的方法有很多名称,但本质都是避免出现矛盾。
对数独游戏不是很熟悉的朋友,强烈建议先基础开始看起,
18年12月7日是入门介绍(点击进入),
19年2月3日是基础方法(点击进入),
19年4月26日是排除法(点击进入),
19年4月27日是占位法(点击进入),
19年5月6日是数对占位法(点击进入),
19年5月17日是数对占位法(点击进入),
19年10月1日是数对占位法(点击进入),
19年11月26日是XY-wing法(点击进入)
,19年12月4日是X-wing法(点击进入)。
19年12月27日是数串法(点击进入)。
20年1月4日是数串法(点击进入),
20年2月14日是数串法(点击进入),
今天讲解的方法叫XYZ-wing法:如下图所示,若第1行第3列中的数只可能是a,b,c,且第1行第4列中的数只可能是a,c,且第3行第3列中的数只可能是b,c,则第1行第1列和第1行第2列不是c。

证明过程很简单,如果第1行第1列或第1行第2列是c,则第1行第4列是a,第1行第3列是b,第3行第3列没有数字可填。出现矛盾!故第1行第1列和第1行第2列不是c。这个技巧被称为XYZ-wing,属于数独高手必备技能之一,今天的题目就将用它解题。
步骤1:先思考第一个问题,标记出每个小格中的候选数字。这个问题比较简单,直接标记即可,如下图中红色小字体所示。

步骤2:再思考第二个问题,对第1行第4列的数用XY-wing法。在步骤1的图表中进行思考,第1行第1列可能是3或8,第3行第3列可能是3或5,第3行第6列可能是5或8,则根据XY-wing判别方法,第1行第4列不可能是8。用反证法可以说明这个结论,假如第1行第4列是8,则第1行第1列只能是3,第3行第3列只能是5,第3行第6列只能是8,此时第二宫中出现了2个8,出现矛盾!因此第1行第4列一定不是8。此时数独表格如下图所示。

步骤3:再思考第3个问题,用XYZ-wing法确定第1行第1列的数。在步骤2的图表中进行思考,第1行第3列可能是3、4或5,第3行第3列可能是3或5,第1行第4列可能是3或4,让a=4,b=5,c=3,符合上面XYZ-wing的关系,故第1行第1列一定不是3,因此第1行第1列只能是8。此时数独表格如下图所示。

步骤4:综上上述几个步骤,完成整个数独表格。第1行第8列只能是9,第7行第7列只能是6,第9行第5列只能是6,第6行第1列只能是1,……不断使用占位法和排除法,最终完成的数独表格如下图所示。

思考题(4星难度):桌子上有2堆扑克牌,一堆是38张,另一堆是19张。小明和小红玩轮流摸牌游戏,每人每次可以从任意一堆中取走任意张牌,但只能从其中一堆中摸牌。摸走最后一张牌的人获胜。小明先摸牌,他有没有必胜策略?
我的微信公众号“每天3道奥数题”(tiantianaoshu),欢迎关注。