Squeeze-and-Attention Networks for Semantic Segmentation解读
最近将注意力机制整合到分割任务通过强调特征里面的信息中来提升模型的表征能力。但是这些注意力机制忽略了一个暗含的分割子任务并且被卷积核的方格型形状所限制。我们提出了一个新颖的压缩注意力网络(SANet)结构,利用了一个高效的压缩注意力(SA)模型去计算两个分割图突出的特征:1)分组像素注意 2)像素级预测。特别指出,我们提出的压缩注意力模型通过引入注意力卷积通道在常规卷积上加了像素组注意力,所以以有效的方式引入一个空间-通道相互依赖。最终的分割结果由网络输出和四个阶段的多尺度上下文目标像素级预测增强融合所得。






