c语言埃尔米特插值思路,【数学建模算法】(26)插值和拟合:埃尔米特(Hermite)插值和样条插值...

1.埃尔米特(Hermite)插值

1.1.Hermite插值多项式

如果对插值函数,不仅要求它在节点处与函数同值,而且要求它与函数有相同的一阶、二阶甚至更高阶的导数值,这就是 Hermite 插值问题。本节主要讨论在节点处插值函数与函数的值及一阶导数值均相等的 Hermite 插值。

设已知函数

math?formula=y%3Df(x)

math?formula=n%2B1个互异节点

math?formula=x_%7B0%7D%2C%20x_%7B1%7D%2C%20%5Ccdots%2C%20x_%7Bn%7D上的函数值

math?formula=y_%7Bi%7D%3Df%5Cleft(x_%7Bi%7D%5Cright)(i%3D0%2C1%2C%20%5Ccdots%2C%20n)和导数值

math?formula=y_%7Bi%7D%5E%7B%5Cprime%7D%3Df%5E%7B%5Cprime%7D%5Cleft(x_%7Bi%7D%5Cright)%20%5Cquad(i%3D0%2C1%2C%20%5Ccdots%2C%20n),要求一个至多

math?formula=2%20n%2B1次的多项式

math?formula=H(x),使得:

math?formula=H%5Cleft(x_%7Bi%7D%5Cright)%3Dy_%7Bi%7D%20%5Cquad%20H%5E%7B%5Cprime%7D%5Cleft(x_%7Bi%7D%5Cright)%3Dy_%7Bi%7D%5E%7B%5Cprime%7D%20%5Cquad(i%3D0%2C1%2C%20%5Ccdots%2C%20n)

满足上述条件的多项式

math?formula=H(x)称为Hermite多项式。

Hermite 插值多项式为:

math?formula=H(x)%3D%5Csum_%7Bi%3D0%7D%5E%7Bn%7D%20h_%7Bi%7D%5Cleft%5B%5Cleft(x_%7Bi%7D-x%5Cright)%5Cleft(2%20a_%7Bi%7D%20y_%7Bi%7D-y_%7Bi%7D%5E%7B%5Cprime%7D%5Cright)%2By_%7Bi%7D%5Cright%5D

其中:

math?formula=h_%7Bi%7D%3D%5Cprod_%7Bj%3D0%20%5Catop%20j%20%5Cneq%20i%7D%5E%7Bn%7D%5Cleft(%5Cfrac%7Bx-x_%7Bj%7D%7D%7Bx_%7Bi%7D-x_%7Bj%7D%7D%5Cright)%5E%7B2%7D%2C%20%5Cquad%20a_%7Bi%7D%3D%5Csum_%7Bj%3D0%20%5Catop%20j%20%5Cneq%20i%7D%5E%7Bn%7D%20%5Cfrac%7B1%7D%7Bx_%7Bi%7D-x_%7Bj%7D%7D

1.2.用Matlab实现Hermite插值

Matlab 中没有现成的 Hermite 插值函数,必须编写一个 M 文件实现插值。

math?formula=n个节点的数据以数组

math?formula=x0(已知点的横坐标),

math?formula=y0(函数值),

math?formula=y1(导数值)输入(注意 Matlat 的数组下标从 1 开始),

math?formula=m个插值点以数组

math?formula=x输入,输出数组

math?formula=y

math?formula=m个插值。编写一个名为herite.m的M文件:

function y=hermite(x0,y0,y1,x);

n=length(x0);m=length(x);

for k=1:m

yy=0.0;

for i=1:n

h=1.0;

a=0.0;

for j=1:n

if j~=i

h=h*((x(k)-x0(j))/(x0(i)-x0(j)))^2;

a=1/(x0(i)-x0(j))+a;

end

end

yy=yy+h*((x0(i)-x(k))*(2*a*y0(i)-y1(i))+y0(i));

end

y(k)=yy;

end

2.样条插值

许多工程技术中提出的计算问题对插值函数的光滑性有较高要求,如飞机的机翼外形,内燃机的进、排气门的凸轮曲线,都要求曲线具有较高的光滑程度,不仅要连续,而且要有连续的曲率,这就导致了样条插值的产生。

2.1.样条函数的概念

所谓样条(Spline)本来是工程设计中使用的一种绘图工具,它是富有弹性的细木条或细金属条。绘图员利用它把一些已知点连接成一条光滑曲线(称为样条曲线),并使连接点处有连续的曲率。

数学上将具有一定光滑性的分段多项式称为样条函数。具体地说,给定区间

math?formula=%5Ba%2C%20b%5D的一个分划:

math?formula=%5CDelta%20%3A%20%5Cquad%20a%3Dx_%7B0%7D%3Cx_%7B1%7D%3C%5Ccdots%3Cx_%7Bn-1%7D%3Cx_%7Bn%7D%3Db

如果函数

math?formula=s(x)满足:

(1)在每个小区间

math?formula=%5Cleft%5Bx_%7Bi%7D%2C%20x_%7Bi-1%7D%5Cright%5D(i%3D0%2C1%2C%20%5Ccdots%2C%20n-1)

math?formula=s(x)

math?formula=k次多项式。

(2)

math?formula=s(x)

math?formula=%5Ba%2C%20b%5D上具有

math?formula=k-1

阶连续导数。

则称

math?formula=s(x)为关于分划

math?formula=%5CDelta

math?formula=k次样条函数,其图形称为

math?formula=k次样条函数。

math?formula=x_%7B0%7D%2C%20x_%7B1%7D%2C%20%5Ccdots%2C%20x_%7Bn%7D称为样条节点,

math?formula=x_%7B1%7D%2C%20x_%7B2%7D%2C%20%5Ccdots%2C%20x_%7Bn-1%7D称为内节点,

math?formula=x_%7B0%7D%2C%20x_%7Bn%7D称为边界点,这类样条函数的全体记做

math?formula=S_%7BP%7D(%5CDelta%2C%20k),则

math?formula=s(x)是关于分划

math?formula=%5CDelta

math?formula=k次多项式样条函数。

math?formula=k次多项式样条函数的一般形式为:

math?formula=s_%7Bk%7D(x)%3D%5Csum_%7Bi%3D0%7D%5E%7Bk%7D%20%5Cfrac%7B%5Calpha_%7Bi%7D%20x%5E%7Bi%7D%7D%7Bi%20!%7D%2B%5Csum_%7Bj%3D1%7D%5E%7Bn-1%7D%20%5Cfrac%7B%5Cbeta_%7Bj%7D%7D%7Bk%20!%7D%5Cleft(x-x_%7Bj%7D%5Cright)_%7B%2B%7D%5E%7Bk%7D

其中

math?formula=%5Calpha_%7Bi%7D(i%3D0%2C1%2C%20%5Ccdots%2C%20k)

math?formula=%5Cbeta_%7Bj%7D(j%3D1%2C2%2C%20%5Ccdots%2C%20n-1)均为任意常数,而:

math?formula=%5Cleft(x-x_%7Bj%7D%5Cright)_%7B%2B%7D%5E%7Bk%7D%3D%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D%7B%5Cleft(x-x_%7Bj%7D%5Cright)%5E%7Bk%7D%2C%20x%20%5Cgeq%20x_%7Bj%7D%7D%20%5C%5C%20%7B0%2C%20%5Cquad%20x%3Cx_%7Bj%7D%7D%5Cend%7Barray%7D%2C%20%5Cquad(j%3D1%2C2%2C%20%5Ccdots%2C%20n-1)%5Cright.

在实际中最常用的是

math?formula=k%3D2或3的情况,即为二次样条函数和三次样条函数。

二次样条函数:

对于

math?formula=%5Ba%2C%20b%5D上的分划

math?formula=%5CDelta%20%3A%20a%3Dx_%7B0%7D%3Cx_%7B1%7D%3C%5Ccdots%3Cx_%7Bn%7D%3Db,则:

math?formula=s_%7B2%7D(x)%3D%5Calpha_%7B0%7D%2B%5Calpha_%7B1%7D%20x%2B%5Cfrac%7B%5Calpha_%7B2%7D%7D%7B2%20!%7D%20x%5E%7B2%7D%2B%5Csum_%7Bj%3D1%7D%5E%7Bn-1%7D%20%5Cfrac%7B%5Cbeta_%7Bj%7D%7D%7B2%20!%7D%5Cleft(x-x_%7Bj%7D%5Cright)_%7B%2B%7D%5E%7B2%7D%20%5Cin%20S_%7BP%7D(%5CDelta%2C%202)

其中:

math?formula=%5Cleft(x-x_%7Bj%7D%5Cright)_%7B%2B%7D%5E%7B2%7D%3D%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D%7B%5Cleft(x-x_%7Bj%7D%5Cright)%5E%7B2%7D%2C%20x%20%5Cgeq%20x_%7Bj%7D%7D%20%5C%5C%20%7B0%2C%20%5Cquad%20x%3Cx_%7Bj%7D%7D%5Cend%7Barray%7D%2C%20%5Cquad(j%3D1%2C2%2C%20%5Ccdots%2C%20n-1)%5Cright.

三次样条函数:

对于

math?formula=%5Ba%2C%20b%5D上的分划

math?formula=%5CDelta%20%3A%20a%3Dx_%7B0%7D%3Cx_%7B1%7D%3C%5Ccdots%3Cx_%7Bn%7D%3Db,则:

math?formula=s_%7B2%7D(x)%3D%5Calpha_%7B0%7D%2B%5Calpha_%7B1%7D%20x%2B%5Cfrac%7B%5Calpha_%7B2%7D%7D%7B2%20!%7D%20x%5E%7B2%7D%2B%5Csum_%7Bj%3D1%7D%5E%7Bn-1%7D%20%5Cfrac%7B%5Cbeta_%7Bj%7D%7D%7B2%20!%7D%5Cleft(x-x_%7Bj%7D%5Cright)_%7B%2B%7D%5E%7B2%7D%20%5Cin%20S_%7BP%7D(%5CDelta%2C%202)

其中:

math?formula=%5Cleft(x-x_%7Bj%7D%5Cright)_%7B%2B%7D%5E%7B3%7D%3D%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D%7B%5Cleft(x-x_%7Bj%7D%5Cright)%5E%7B3%7D%2C%20x%20%5Cgeq%20x_%7Bj%7D%7D%20%5C%5C%20%7B0%2C%20%5Cquad%20x%3Cx_%7Bj%7D%7D%5Cend%7Barray%7D%2C%20%5Cquad(j%3D1%2C2%2C%20%5Ccdots%2C%20n-1)%5Cright.

利用样条函数进行插值,即取插值函数为样条函数,称为样条插值。例如分段线性插值是一次样条插值。下面我们介绍二次、三次样条插值。

2.2.二次样条函数插值

首先,我们注意到

math?formula=s_%7B2%7D(x)%20%5Cin%20S_%7BP%7D(%5CDelta%2C%202)中含有

math?formula=n%2B2个特定常数,故应需要

math?formula=n%2B2 + n 个插值条件,因此,二次样条插值问题可分为两类:

问题(1):

已知插值节点

math?formula=x_%7Bi%7D和相应的函数值

math?formula=y_%7Bi%7D(i%3D0%2C1%2C%20%5Ccdots%2C%20n)以及端点

math?formula=x_%7B0%7D(或

math?formula=x_%7Bn%7D)处的导数值

math?formula=y_%7B0%7D%5E%7B%5Cprime%7D(或

math?formula=y_%7Bn%7D%5E%7B%5Cprime%7D),求

math?formula=s_%7B2%7D(x)%20%5Cin%20S_%7Bp%7D(%5CDelta%2C%202)使得:

math?formula=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D%7Bs_%7B2%7D%5Cleft(x_%7Bi%7D%5Cright)%3Dy_%7Bi%7D(i%3D0%2C1%2C2%2C%20%5Ccdots%2C%20n)%7D%20%5C%5C%20%7Bs_%7B2%7D%5E%7B%5Cprime%7D%5Cleft(x_%7B0%7D%5Cright)%3Dy_%7B0%7D%5Cleft(%E6%88%96s_%7Bn%7D%5E%7B%5Cprime%7D%5Cleft(x_%7Bn%7D%5Cright)%3Dy_%7Bn%7D%5Cright)%7D%5Cend%7Barray%7D%5Cright.

问题(2):

已知插值节点

math?formula=x_%7Bi%7D和相应的导数值

math?formula=y_%7Bi%7D%5E%7B%5Cprime%7D(i%3D0%2C1%2C2%2C%20%5Ccdots%2C%20n)以及端点

math?formula=x_%7B0%7D(或

math?formula=x_%7Bn%7D)处的函数值

math?formula=y_%7B0%7D(或

math?formula=y_%7Bn%7D),求

math?formula=s_%7B2%7D(x)%20%5Cin%20S_%7Bp%7D(%5CDelta%2C%202)使得:

math?formula=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D%7Bs_%7B2%7D%5E%7B%5Cprime%7D%5Cleft(x_%7Bi%7D%5Cright)%3Dy_%7Bi%7D%5E%7B%5Cprime%7D(i%3D0%2C1%2C2%2C%20%5Ccdots%2C%20n)%7D%20%5C%5C%20%7Bs_%7B2%7D%5Cleft(x_%7B0%7D%5Cright)%3Dy_%7B0%7D%5Cleft(%E6%88%96s_%7Bn%7D%5Cleft(x_%7Bn%7D%5Cright)%3Dy_%7Bn%7D%5Cright)%7D%5Cend%7Barray%7D%5Cright.

事实上,可以证明这两类插值问题都是唯一可解的。

对于问题(1)有:

math?formula=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D%7Bs_%7B2%7D%5Cleft(x_%7B0%7D%5Cright)%3D%5Calpha_%7B0%7D%2B%5Calpha_%7B1%7D%20x_%7B0%7D%2B%5Cfrac%7B1%7D%7B2%7D%20%5Calpha_%7B2%7D%20x_%7B0%7D%5E%7B2%7D%3Dy_%7B0%7D%7D%20%5C%5C%20%7Bs_%7B2%7D%5Cleft(x_%7B1%7D%5Cright)%3D%5Calpha_%7B0%7D%2B%5Calpha_%7B1%7D%20x_%7B1%7D%2B%5Cfrac%7B1%7D%7B2%7D%20%5Calpha_%7B2%7D%20x_%7B1%7D%5E%7B2%7D%3Dy_%7B1%7D%7D%20%5C%5C%20%7Bs_%7B2%7D%5Cleft(x_%7Bj%7D%5Cright)%3D%5Calpha_%7B0%7D%2B%5Calpha_%7B1%7D%20x_%7Bj%7D%2B%5Cfrac%7B1%7D%7B2%7D%20%5Calpha_%7B2%7D%20x_%7Bj%7D%5E%7B2%7D%2B%5Cfrac%7B1%7D%7B2%7D%20%5Csum_%7Bi%3D1%7D%5E%7Bk-1%7D%20%5Cbeta_%7Bi%7D%5Cleft(x_%7Bj%7D-x_%7Bi%7D%5Cright)%5E%7B2%7D%3Dy_%7Bj%7D%20%5Cquad(j%3D2%2C3%2C%20%5Ccdots%2C%20n)%7D%20%5C%5C%20%7Bs_%7B2%7D%5E%7B%5Cprime%7D%5Cleft(x_%7B0%7D%5Cright)%3D%5Calpha_%7B1%7D%2B%5Calpha_%7B2%7D%20x_%7B0%7D%3Dy_%7B0%7D%5E%7B%5Cprime%7D%7D%5Cend%7Barray%7D%5Cright.

引入记号

math?formula=X%3D%5Cleft(%5Calpha_%7B0%7D%2C%20%5Calpha_%7B1%7D%2C%20%5Calpha_%7B2%7D%2C%20%5Cbeta_%7B1%7D%2C%20%5Ccdots%2C%20%5Cbeta_%7Bn-1%7D%5Cright)%5E%7BT%7D为未知向量,

math?formula=C%3D%5Cleft(y_%7B0%7D%2C%20y_%7B1%7D%2C%20%5Ccdots%2C%20y_%7Bn%7D%2C%20y_%7B0%7D%5E%7B%5Cprime%7D%5Cright)为已知向量。

math?formula=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccccc%7D%7B1%7D%20%26%20%7Bx_%7B0%7D%7D%20%26%20%7B%5Cfrac%7B1%7D%7B2%7D%20x_%7B0%7D%5E%7B2%7D%7D%20%26%20%7B0%7D%20%26%20%7B%5Ccdots%7D%20%26%20%7B0%7D%20%5C%5C%20%7B1%7D%20%26%20%7Bx_%7B1%7D%7D%20%26%20%7B%5Cfrac%7B1%7D%7B2%7D%20x_%7B1%7D%5E%7B2%7D%7D%20%26%20%7B0%7D%20%26%20%7B%5Ccdots%7D%20%26%20%7B0%7D%20%5C%5C%20%7B1%7D%20%26%20%7Bx_%7B2%7D%7D%20%26%20%7B%5Cfrac%7B1%7D%7B2%7D%20x_%7B2%7D%5E%7B2%7D%7D%20%26%20%7B%5Cfrac%7B1%7D%7B2%7D%5Cleft(x_%7B2%7D-x_%7B1%7D%5Cright)%5E%7B2%7D%7D%20%26%20%7B%5Ccdots%7D%20%26%20%7B0%7D%20%5C%5C%20%7B%5Cvdots%7D%20%26%20%7B%5Cvdots%7D%20%26%20%7B%5Cvdots%7D%20%26%20%7B0%7D%20%26%20%7B%5Cvdots%7D%20%26%20%7B%5Cvdots%7D%20%5C%5C%20%7B1%7D%20%26%20%7Bx_%7Bn%7D%7D%20%26%20%7B%5Cfrac%7B1%7D%7B2%7D%20x_%7Bn%7D%5E%7B2%7D%7D%20%26%20%7B%5Cfrac%7B1%7D%7B2%7D%5Cleft(x_%7Bn%7D-x_%7B1%7D%5Cright)%5E%7B2%7D%7D%20%26%20%7B%5Ccdots%7D%20%26%20%7B%5Cfrac%7B1%7D%7B2%7D%5Cleft(x_%7Bn%7D-x_%7Bn-1%7D%5Cright)%5E%7B2%7D%7D%20%5C%5C%20%7B0%7D%20%26%20%7B1%7D%20%26%20%7Bx_%7B0%7D%7D%20%26%20%7B0%7D%20%26%20%7B%5Ccdots%7D%20%26%20%7B0%7D%5Cend%7Barray%7D%5Cright%5D

于是,问题转化为求方程组

math?formula=AX%3DC的解

math?formula=X%3D%5Cleft(%5Calpha_%7B0%7D%2C%20%5Calpha_%7B1%7D%2C%20%5Calpha_%7B2%7D%2C%20%5Cbeta_%7B1%7D%2C%20%5Ccdots%2C%20%5Cbeta_%7Bn-1%7D%5Cright)%5E%7BT%7D的问题,即可得到二次样条函数

math?formula=s_%7B2%7D(x)的表达式。

对于问题(2)的情况类似。

2.3.三次样条函数插值

由于

math?formula=s_%7B3%7D(x)%20%5Cin%20S_%7Bp%7D(%5CDelta%2C%203)中含有

math?formula=n%2B3个待定系数。故应需要

math?formula=n%2B3个待定系数,已知插值节点

math?formula=x_%7Bi%7D和相应的函数值

math?formula=f%5Cleft(x_%7Bi%7D%5Cright)%3Dy_%7Bi%7D(i%3D0%2C1%2C2%2C%20%5Ccdots%2C%20n),这里提供了

math?formula=n%2B1个条件,还需要2个边界条件。

常用的三次样条函数的边界条件有 3 种类型:

(1)

math?formula=s_%7B3%7D%5E%7B%5Cprime%7D(a)%3Dy_%7B0%7D%5E%7B%5Cprime%7D%2C%20s_%7B3%7D%5E%7B%5Cprime%7D(b)%3Dy_%7Bn%7D%5E%7B%5Cprime%7D。由这种边界条件建立的样条插值函数称为

math?formula=f(x)的完备三次样条插值函数。

特别地,

math?formula=y_%7B0%7D%5E%7B%5Cprime%7D%3Dy_%7Bn%7D%5E%7B%5Cprime%7D%3D0时,样条曲线在端点处呈水平状态。

如果

math?formula=f%5E%7B%5Cprime%7D(x)不知道,我们可以要求

math?formula=s_%7B3%7D%5E%7B%5Cprime%7D(x)

math?formula=f%5E%7B%5Cprime%7D(x)在端点处近似相等。这时以

math?formula=x_%7B0%7D%2C%20x_%7B1%7D%2C%20x_%7B2%7D%2C%20x_%7B3%7D为节点作一个三次Newton插值多项式

math?formula=N_%7Ba%7D(x),以

math?formula=x_%7Bn%7D%2C%20x_%7Bn-1%7D%2C%20x_%7Bn-2%7D%2C%20x_%7Bn-3%7D作一个三次Newton插值多项式

math?formula=N_%7Bb%7D(x),要求:

math?formula=s%5E%7B%5Cprime%7D(a)%3DN_%7Ba%7D%5E%7B%5Cprime%7D(a)%2C%20s%5E%7B%5Cprime%7D(b)%3DN_%7Bb%7D%5E%7B%5Cprime%7D(b)

(2)

math?formula=s%5E%7B%5Cprime%20%5Cprime%7D(a)%3Dy%5E%7B%5Cprime%20%5Cprime%7D_%7B0%7D%2C%20s_%7B3%7D%5E%7B%5Cprime%20%5Cprime%7D(b)%3Dy%5E%7B%5Cprime%20%5Cprime%7D_%7B3%7D。特别地

math?formula=y_%7Bn%7D%5E%7B%5Cprime%20%5Cprime%7D%3Dy_%7Bn%7D%5E%7B%5Cprime%20%5Cprime%7D%3D0,称为自然边界条件。

(3)

math?formula=s_%7B3%7D%5E%7B%5Cprime%7D(a%2B0)%3Ds_%7B3%7D%5E%7B%5Cprime%7D(b-0)%2C%20s_%7B3%7D%5E%7B%5Cprime%20%5Cprime%7D(a%2B0)%3Ds_%7B3%7D%5E%7B%5Cprime%20%5Cprime%7D(b-0),(这里要求)

math?formula=s_%7B3%7D(a%2B0)%3Ds_%7B3%7D(b-0)此条件称为周期条件。

2.4.三次样条插值在Matlab中的实现

在 Matlab 中数据点称之为断点。如果三次样条插值没有边界条件,最常用的方法,就是采用非扭结(not-a-knot)条件。这个条件强迫第 1 个和第 2 个三次多项式的三阶导数相等。对最后一个和倒数第 2 个三次多项式也做同样地处理。

Matlab 中三次样条插值也有现成的函数:

y=interp1(x0,y0,x,'spline');

y=spline(x0,y0,x);

pp=csape(x0,y0,conds),y=ppval(pp,x);

其中 x0,y0 是已知数据点,x 是插值点,y 是插值点的函数值。

对于三次样条插值,我们提倡使用函数 csape,csape 的返回值是 pp 形式,要求插值点的函数值,必须调用函数 ppval。

pp=csape(x0,y0):使用默认的边界条件,即 Lagrange 边界条件。

pp=csape(x0,y0,conds)中的 conds 指定插值的边界条件,其值可为:

conds

作用

'complete'

边界为一阶导数,即默认的边界条件

'not-a-knot'

非扭结条件

'periodic'

周期条件

'second'

边界为二阶导数,二阶导数的值[0,0]

对于一些特殊的边界条件,可以通过 conds 的一个

math?formula=1%20%5Ctimes%202矩阵来表示,conds 元素的取值为1,2。此时,使用命令:

pp=csape(x0,y0_ext,conds)

其中 y0_ext=[left, y0, right],这里 left 表示左边界的取值,right 表示右边界的取值。

conds(i)=j 的含义是给定端点

math?formula=i

math?formula=j 阶导数,即 conds 的第一个元素表示左边界的条件,第二个元素表示右边界的条件,conds=[2,1]表示左边界是二阶导数,右边界是一阶导数,对应的值由 left 和 right 给出。

例:机床加工

待加工零件的外形根据工艺要求由一组数据

math?formula=(x%2C%20y)给出(在平面情况下),用程控铣床加工时每一刀只能沿

math?formula=x方向和

math?formula=y方向走非常小的一步,这就需要从已知数据得到加工所要求的步长很小的

math?formula=(x%2C%20y)坐标。

下表给出的数据

math?formula=x%2C%20y数据位于机翼断面的下轮廓线上,假设需要得到

math?formula=x坐标每改变0.1时的

math?formula=y坐标。试完成加工所需数据,画出曲线,并求出

math?formula=x%3D0处的曲线斜率和

math?formula=13%20%5Cleq%20x%20%5Cleq%2015范围内

math?formula=y的最小值。

数据表:

math?formula=x

0

3

5

7

9

11

12

13

14

15

math?formula=y

0

1.2

1.7

2.0

2.1

2.0

1.8

1.2

1.0

1.6

利用Matlab编程,使用Lagrange,分段线性和三次样条三种插值方法计算。

clc,clear

x0=[0 3 5 7 9 11 12 13 14 15];

y0=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6];

x=0:0.1:15;

y1=lagrange(x0,y0,x); %调用前面编写的Lagrange插值函数

y2=interp1(x0,y0,x);

y3=interp1(x0,y0,x,'spline');

pp1=csape(x0,y0); y4=ppval(pp1,x);

pp2=csape(x0,y0,'second'); y5=ppval(pp2,x);

fprintf('比较一下不同插值方法和边界条件的结果:\n')

fprintf('x y1 y2 y3 y4 y5\n')

xianshi=[x',y1',y2',y3',y4',y5'];

fprintf('%f\t%f\t%f\t%f\t%f\t%f\n',xianshi')

subplot(2,2,1), plot(x0,y0,'+',x,y1), title('Lagrange')

subplot(2,2,2), plot(x0,y0,'+',x,y2), title('Piecewise linear')

subplot(2,2,3), plot(x0,y0,'+',x,y3), title('Spline1')

subplot(2,2,4), plot(x0,y0,'+',x,y4), title('Spline2')

dyx0=ppval(fnder(pp1),x0(1)) %求x=0处的导数

ytemp=y3(131:151);

index=find(ytemp==min(ytemp));

xymin=[x(130+index),ytemp(index)]

(Lagrange函数请参见我的简书文章【数学建模算法】(23)插值和拟合:拉格朗日插值)

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值