Lagent 自定义你的 Agent 智能体
基础作业:
- 使用 Lagent 自定义一个智能体,并使用 Lagent Web Demo 成功部署与调用,记录复现过程并截图。
创建虚拟环境
conda create -n agent_camp3 python=3.10 -y
# 激活环境
conda activate agent_camp3
# 安装 torch
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 安装其他依赖包
pip install termcolor==2.4.0
pip install lmdeploy==0.5.2
创建LAGENT文件夹存放课程相关文件
mkdir LAGENT
cd LAGENT
下载Lagent并安装
git clone https://github.com/InternLM/lagent.git
cd lagent && git checkout 81e7ace && pip install -e . && cd ..
部署Lagent web demo,体验lagent
使用 LMDeploy 部署 InternLM2.5-7B-Chat,并启动一个 API Server
lmdeploy serve api_server /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat --model-name internlm2_5-7b-chat
新建一个窗口
启动 Lagent 的 Web Demo
cd /root/LAGENT/lagent
conda activate agent_camp3
streamlit run examples/internlm2_agent_web_demo.py
打开powershell
输入以下命令:
ssh -CNg -L 8501:127.0.0.1:8501 -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p <你的 SSH 端口号>
打开浏览器访问 http://localhost:8501
报错了,哈哈
为啥呢,因为griffe的新版已经把griffe.enumerations删了,所以我们要降一下版本
pip install griffe==0.48
重新启动 Lagent 的 Web Demo
streamlit run examples/internlm2_agent_web_demo.py
刷新Lagent的页面,看到这个就代表部署成功
将左边的模型名称替换为 internlm2_5-7b-chat
将模型IP替换为 127.0.0.1:23333
插件选择 ArxivSearch
并输入指令“帮我搜索一下最新以图搜图的论文”。
基于 Lagent 自定义智能体
接下来构建自己的智能体
实现一个调用 MagicMaker API 以完成文生图的功能。
先来创建工具文件
cd /root/agent_camp3/lagent
touch lagent/actions/magicmaker.py
输入以下代码:
import json
import requests
from lagent.actions.base_action import BaseAction, tool_api
from lagent.actions.parser import BaseParser, JsonParser
from lagent.schema import ActionReturn, ActionStatusCode
class MagicMaker(BaseAction):
styles_option = [
'dongman', # 动漫
'guofeng', # 国风
'xieshi', # 写实
'youhua', # 油画
'manghe', # 盲盒
]
aspect_ratio_options = [
'16:9', '4:3', '3:2', '1:1',
'2:3', '3:4', '9:16'
]
def __init__(self,
style='guofeng',
aspect_ratio='4:3'):
super().__init__()
if style in self.styles_option:
self.style = style
else:
raise ValueError(f'The style must be one of {self.styles_option}')
if aspect_ratio in self.aspect_ratio_options:
self.aspect_ratio = aspect_ratio
else:
raise ValueError(f'The aspect ratio must be one of {aspect_ratio}')
@tool_api
def generate_image(self, keywords: str) -> dict:
"""Run magicmaker and get the generated image according to the keywords.
Args:
keywords (:class:`str`): the keywords to generate image
Returns:
:class:`dict`: the generated image
* image (str): path to the generated image
"""
try:
response = requests.post(
url='https://magicmaker.openxlab.org.cn/gw/edit-anything/api/v1/bff/sd/generate',
data=json.dumps({
"official": True,
"prompt": keywords,
"style": self.style,
"poseT": False,
"aspectRatio": self.aspect_ratio
}),
headers={'content-type': 'application/json'}
)
except Exception as exc:
return ActionReturn(
errmsg=f'MagicMaker exception: {exc}',
state=ActionStatusCode.HTTP_ERROR)
image_url = response.json()['data']['imgUrl']
return {'image': image_url}
然后修改 /root/LAGENT/lagent/examples/internlm2_agent_web_demo.py
来适配我们的自定义工具。
在 from lagent.actions import ActionExecutor, ArxivSearch, IPythonInterpreter 的下一行添加 from lagent.actions.magicmaker import MagicMaker
在第27行添加 MagicMaker()。
from lagent.actions import ActionExecutor, ArxivSearch, IPythonInterpreter
+ from lagent.actions.magicmaker import MagicMaker
from lagent.agents.internlm2_agent import INTERPRETER_CN, META_CN, PLUGIN_CN, Internlm2Agent, Internlm2Protocol
...
action_list = [
ArxivSearch(),
+ MagicMaker(),
]
再次启动lagent web demo
streamlit run examples/internlm2_agent_web_demo.py
配置还是和之前一样
但插件多了我们刚建的magicmaker
都选上后输入指令“生成一副动漫版的黑神话悟空图片”。
然后,我们再试一下“帮我搜索一下最新以图搜图的论文”。