java越野拉力赛_BZOJ 4244 邮戳拉力赛 (DP)

为了防止我的博客被数学占领(一半以上的博文和数学相关),我决定添加几道非数学题的题解。

目前数学题比例: \(\frac{15}{32}=0.46875\)

扯淡结束

题意: 太长了自己看。

题解:

额……这个题初一的时候好像就在模拟赛里见过。(ckw巨佬当场切掉)

考虑dp: 设\(dp[i][j]\)表示考虑前\(i\)个位置,其中有\(j\)趟车开往\(i\)右边的位置(不包括\(i\))的最小代价。

胡乱转移即可。

……等等……这个题解是不是不太详细……

详细解释一下。

\(A[i]\) 从左边进入\(i\)的费用。

\(B[i]\) 从\(i\)到右边的费用。

\(C[i]\) 从右边进入\(i\)的费用。

\(D[i]\) 从\(i\)到左边的费用。

则从\(j\)到\(i\)的费用是$$w(i,j)=T(i-j)+B[j]+A[i] (j

然后我们拆一拆式子,以\(j

\(w(i,j)=(Ti+A[i])+(-Tj+B[j])\)

然后我们发现一个了不起的性质——贡献的式子对于\(i,j\)是独立的,对于同一个\(i\)来说,\(j\)是多少对贡献并没有影响,有影响的只是\(j\)和\(i\)的大小关系!

于是我们设计出前面所述的状态

转移比较麻烦,我们先考虑一个简化版问题:如果每个点只能经过一次?

考虑枚举当前点的\(4\)种进出状态

左进左出,这样相当于一个原来到右边\(i\)的现在变成了左边,因此右边的数量\(-1\). 从\(dp[i-1][j+1]\)转移来

左进右出,从\(dp[i-1][j]\)转移来

右进左出,从\(dp[i-1][j]\)转移来

右进右出,从\(dp[i-1][j-1]\)转移来

注意(3)(4)两种情况要特判\(j>0\)(想一想为什么)

那如果可以经过多次?加一个类似于完全背包的转移,详见代码。

(继续瞎扯)我做这题的时候,写完了狂WA不止,然后上网搜题解,发现全是什么括号序列,蒙蔽了。

刚准备抄标程的时候,我发现标程除了方程完全不一样,还比我多个特判。

然后我把我的方程加了这个特判。切了……

好了,那么标程是怎么写的呢?

思路是,考虑把原序列转化成括号序列。

左进左出为右括号,右进右出为左括号,然后设了一个和我差不多的dp状态。

然而转移大不相同。因为这种计算方法是答案等于所有匹配的括号的距离之和,计算每一个位置对答案的贡献就是跨过该位置的括号对个数。

总结:用括号序列表示问题是一种不错的思路。

代码实现

#include

#include

#include

#include

#define llong long long

using namespace std;

const int N = 3000;

llong a[N+3];

llong b[N+3];

llong c[N+3];

llong d[N+3];

llong dp[N+3][N+3];

int n; llong t;

int main()

{

scanf("%d%lld",&n,&t);

for(int i=1; i<=n; i++) scanf("%lld%lld%lld%lld",&a[i],&b[i],&c[i],&d[i]);

memset(dp,42,sizeof(dp));

dp[0][0] = 0ll;

for(int i=1; i<=n; i++)

{

for(int j=0; j<=n; j++)

{

if(j)

{

dp[i][j] = min(dp[i][j],dp[i-1][j-1]+(-t*i+c[i])+(-t*i+b[i]));

dp[i][j] = min(dp[i][j],dp[i-1][j]+(-t*i+c[i])+(t*i+d[i]));

}

dp[i][j] = min(dp[i][j],dp[i-1][j]+(t*i+a[i])+(-t*i+b[i]));

dp[i][j] = min(dp[i][j],dp[i-1][j+1]+(t*i+d[i])+(t*i+a[i]));

}

for(int j=1; j<=n; j++) dp[i][j] = min(dp[i][j],dp[i][j-1]+(-t*i+c[i])+(-t*i+b[i]));

for(int j=n-1; j>=0; j--) dp[i][j] = min(dp[i][j],dp[i][j+1]+(t*i+a[i])+(t*i+d[i]));

}

printf("%lld\n",dp[n][0]+t*(n+1ll));

return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值