圆柱体积怎么算立方公式_四个计算圆柱的体积常用公式(附例题)

圆柱的体积是六年级下册第三单元的知识点。利用圆柱的体积公式计算圆柱的体积显得尤为重要。让我们一起来复习一下吧!

第一个计算圆柱的体积公式

新课是怎样引出圆柱的体积的呢?你还记得那个操作不?

选自人教版六年级下册数学课本

人教版课本25页是将圆柱切割拼凑为近似长方体从而得到我们最常用的体积公式V=Sh

例题1:如图,求圆柱的体积

给s和h求圆柱的体积

V=50.24x10=502.4平方厘米

例题2:一个圆柱形蓄水池,水池底面积是3.14平方米,深2米,这个蓄水池可以蓄水多少升?

分析:面积知道,而高就是此题的深。高表示放地球表面,而深就是向地下量。将数值代入公式

V=3.14x2=6.28立方米

6.28立方米=6280立方分米=6280升

答:这个蓄水池可以蓄水6280升。

第二个计算圆柱的体积公式

生活中给你一把尺子,要你算出一个圆柱体罐头体积你会算不?不给面积,我们就要去寻找和圆柱底面积有关的长度——半径。这样就得到了第二个体积公式V=πr2·h

例题3:如图,求圆柱的体积?

单位cm,求圆柱的体积

V=3.14x3x3x10=288.6平方厘米

例题4:万大叔家定制了一个圆柱形粮仓,底面半径是2米,高是5米。如果每立方米稻谷重750千克,这个粮仓可以放稻谷多少吨?

分析:每立方米750千克,那有多少个立方米呢?算体积得先有底面积,这就是与例题2的区别之处。

V=3.14x2x2x5=62.8立方米

62.8x750=47100kg=47.1t

答:这个粮仓可以放稻谷47.1吨。

第三个计算圆柱的体积公式

这类题目只给直径和高,比第二个公式只多一步:d÷2=r后面就一样了。V=兀(d÷2)2h

例题5:如图,求圆柱的体积

单位cm求圆柱的体积

V=3.14x(6÷2)x(6÷2)x15=423.9平方厘米

例题6:一种圆柱形固体胶,底面直接是2cm,高是7cm,这种固体胶的体积是多少?

V=3.14x(2÷2)x(2÷2)x7=21.98立方厘米

答:这种固体胶的体积是21.98立方厘米。

第四个计算圆柱的体积公式

再一次变形,不给半径也不给直径。而给底面周长。同样只是加了一丁点难度。记住r=c÷兀÷2。那么求圆柱的体积综合公式就是

V=兀·(c÷兀÷2)2·h

例题7:如图,求圆柱的体积

单位dm求圆柱的体积

12.56÷3.14÷2=2分米

V=3.14x2x2x10=125.6平方分米

例题8:天然气供气站立着一个大型圆柱存气桶。量的底面圆的周长是25.12米,高是8米,这个气桶存气多少升?

25.12÷3.14÷2=4米

V=3.14x4x4x8=401.92立方米

401.92立方米=401920立方分米=401920升

答:这个气桶可以存气401920升。

### Ansys 中直齿圆柱齿轮的分析 在工程领域,直齿圆柱齿轮的力学行为可以通过有限元软件 ANSYS 进行详细的建模和分析。这种分析通常涉及应力分布、接触力以及疲劳寿命预测等内容[^1]。 #### 1. 建立几何模型 在 ANSYS 的前处理模块中,可以利用参数化设计工具创建直齿圆柱齿轮的三维几何模型。为了简化计算并提高效率,可以选择二维轴对称模型或者全三维实体模型来表示齿轮及其啮合区域。对于复杂的轮齿形状,可能需要借助 CAD 软件完成初步建模后再导入到 ANSYS 平台中进行进一步编辑[^2]。 #### 2. 材料属性设置 定义齿轮所使用的材料特性是非常重要的一步。这包括但不限于弹性模量、泊松比、屈服强度等基本物理常数。如果研究目标还涉及到热效应,则还需要输入导热系数等相关数据。 #### 3. 边界条件与载荷施加 合理设定边界条件能够更真实地反映实际工作环境下的受力情况。例如,在传动系统中常见的扭矩传递可通过节点上的旋转约束实现;而外部负载则可以直接作用于特定表面作为压力形式加载上去。此外,还可以考虑动态工况下周期变化的交变负荷影响。 #### 4. 使用适当求解器 根据问题性质的不同(如静力平衡还是瞬态响应),应选取相应的数值法来进行下一步运操作——即采用静态求解器还是其他类型的高级选项取决于具体的项目需求。 #### 5. 后处理阶段 最后,在得到解决方案之后,要充分利用后处理器所提供的功能查看结果图表,比如云图显示最大Von Mises 应力位置、变形趋势曲线绘制等等。这些可视化手段有助于工程师快速定位潜在危险部位,并据此优化设计方案。 以下是基于上述理论框架的一个简单 Python 脚本模板用于自动化部分流程: ```python import ansys.mapdl.core as mapdl # 初始化 MAPDL 实例 mapdl = mapdl.launch_mapdl() # 创建几何体 (假设已知齿轮尺寸) mapdl.prep7() mapdl.et(1, 'SOLID186') # 定义单元类型 mapdl.mp('EX', 1, 200e9) # 设置杨氏模量 mapdl.mp('DENS', 1, 7800) # 密度 mapdl.block(0, 10, 0, 5, 0, 2) # 示例立方体代替齿轮 # 划分网格 mapdl.vsweep(1) # 施加边界条件和载荷 mapdl.nsel('S', 'LOC', 'X', 0) mapdl.d('ALL', 'UX') mapdl.fk(100, 'PRES', 1e6) # 表面压力代表外力 # 解过程 mapdl.solve() # 提取结果 stress_results = mapdl.post_processing nodal_stress() print(stress_results) ``` 此脚本仅为演示目的编写,需依据实际情况调整具体命令参数以适应不同的案例场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值