简介:该项目专注于统计分析中的2x2列联表分析,运用Fisher的精确检验和MID-P方法来评估表格行与列的独立性。Fisher精确检验用于判断分类变量间的关联性,并提供准确的P值,尤其适用于样本量较小或期望频数低的情况。MID-P方法是Fisher检验的改进,提供更为保守的统计推断,减少假阳性错误。在MATLAB环境下,用户通过调用 FisherExtest.m
函数来执行检验,该函数能够计算P值、OR值和置信区间,并通过 license.txt
文件了解代码的使用权限。该技术在生物医学和社会科学研究中有着广泛的应用。
1. MATLAB统计分析基础
1.1 MATLAB简介
MATLAB(矩阵实验室)是一个高性能的数值计算环境和第四代编程语言,广泛应用于算法开发、数据可视化、数据分析以及数值计算领域。它提供了一套庞大的内置函数库,使得复杂的数学运算变得简单直观。对于统计分析而言,MATLAB提供了一系列的工具箱,如统计和机器学习工具箱,这使得它在进行统计分析时显得非常强大和灵活。
1.2 MATLAB统计分析功能概览
统计分析是MATLAB的一个重要应用领域。其统计工具箱包括了多种统计分析函数和图形表示方法,如概率分布、假设检验、回归分析、聚类分析、主成分分析等。这些功能使得MATLAB成为科研和工程领域进行数据分析的强大工具。对于初学者来说,MATLAB的易用性和直观性降低了学习门槛,而对于专业人士,MATLAB的强大计算能力和丰富的函数库提供了强大的支持。
1.3 使用MATLAB进行基本统计分析
在MATLAB中进行统计分析通常涉及以下几个步骤: 1. 数据准备:将需要分析的数据加载到MATLAB工作空间中。 2. 应用统计函数:利用MATLAB内置的统计函数对数据进行处理。例如, mean
函数计算均值, std
函数计算标准差等。 3. 结果分析:对统计函数返回的结果进行解读,以支持决策或研究目的。 4. 图形展示:使用绘图函数如 histogram
、 boxplot
等,将统计结果以图形方式直观展示。
以下是一个简单的示例,展示如何使用MATLAB计算一组数据的均值和标准差:
% 假设有一组数据
data = [2, 3, 4, 5, 6];
% 计算均值
mean_value = mean(data);
% 计算标准差
std_dev = std(data);
% 输出结果
fprintf('数据的均值为:%f\n', mean_value);
fprintf('数据的标准差为:%f\n', std_dev);
通过这些基本步骤和函数的使用,我们可以开始在MATLAB中进行初步的统计分析。随着学习和实践的深入,用户将能够运用更高级的统计方法来处理复杂的数据集。
2. 2x2列联表的理解与构建
2.1 列联表的概念与重要性
2.1.1 列联表定义及其在统计中的作用
列联表是统计分析中一种重要的数据组织形式,用于展示两个或多个分类变量之间的频数分布。特别是在进行频数数据的独立性检验、关联性分析时,列联表发挥着至关重要的作用。通过列联表,研究者能够清晰地看到不同类别之间的频数对应关系,并为进一步的统计分析打下基础。对于2x2列联表,因其简单直观的结构,被广泛应用于医学、生物学、社会学等多个领域的研究中,用以分析两个二分类变量之间的关系。
2.1.2 2x2列联表的结构特点
2x2列联表是一种特殊的列联表,它由两个行变量和两个列变量组成,每个变量只有两个类别。在形式上,2x2列联表可看作是四格表,每个格子中填充的是对应两个变量类别的频数。例如,医学研究中常见的治疗效果分析,"治疗"和"未治疗"作为行变量,"有效"和"无效"作为列变量,就可以构建一个2x2列联表来展示治疗的成效。这种表格形式直观、简洁,方便研究者进行数据的可视化和初步分析。
2.2 构建2x2列联表的步骤和方法
2.2.1 数据收集与整理
构建2x2列联表的第一步是进行数据收集和整理。这通常涉及到研究设计,确定研究假设,明确分类变量的类别,并收集足够数量的数据样本。收集到的原始数据需要整理成一个可以用于构建列联表的格式,确保每个观测值都能准确对应到四个格子中的一个。
2.2.2 列联表的具体构建过程
在数据整理完成后,接下来是具体构建列联表的过程。构建步骤通常包括:
- 确定行和列变量 :选择两个二分类的变量作为列联表的行和列。
- 计算频数 :统计每种组合下的频数,即每行每列交叉点的观测值数量。
- 填写列联表 :在对应的行和列交叉点填入计算得到的频数。
- 验证边际总和 :确认每一行和每一列的频数总和是否正确。
构建列联表后,研究者需要仔细核对数据以确保无误,因为数据的准确性直接影响到后续统计分析的有效性。当列联表构建完毕后,就可以进一步使用统计软件进行独立性检验和相关分析。在本章节中,我们将通过一个实例来展示列联表的构建过程,同时也会涉及一些基本的统计概念和分析方法,为下一章节中对Fisher精确检验的探讨奠定基础。
3. Fisher精确检验的原理与应用
3.1 Fisher精确检验的理论基础
3.1.1 精确检验与近似检验的区别
在统计学中,检验方法的选择对于分析结果的准确性至关重要。常见的检验方法分为精确检验和近似检验。精确检验,顾名思义,其计算结果与真实值之间的误差较小,可以直接得到确切的概率值,无需进行复杂的近似计算。然而,这种精确性是以计算复杂度的增加为代价的,尤其在样本量较大时,计算成本可能会变得非常高。
相对而言,近似检验依赖于特定的数学近似方法,如卡方分布近似,可以快速提供一个大概的结果。这种近似在样本量足够大,或者检验的假设成立时,近似误差通常可以接受。但在某些情况下,如样本量较小或理论假设不满足时,近似检验的结果可能会与实际情况有较大偏差。
3.1.2 Fisher精确检验的前提假设和适用场景
Fisher精确检验是专门针对2x2列联表设计的一种精确检验方法,其在理论上不依赖于样本量的大小,特别适合小样本数据分析。其基本假设是列联表中的每个观察值都是独立的,并且遵循多项分布。
在应用Fisher精确检验时,有几点需要特别注意: - 检验主要用于检验两个分类变量之间是否独立,因此适用于分类数据的分析。 - Fisher精确检验不需要进行任何参数假设,因此适用于理论分布未知或者样本量小的情况。 - 在分析过程中,需要注意任何单格的期望频数小于1或者任一期望频数小于5的情况,这可能会导致检验结果的准确性下降。
Fisher精确检验的适用场景广泛,尤其是那些涉及到罕见事件的医学研究、生物学实验,以及任何需要对小样本进行精确分析的领域。
3.2 应用Fisher精确检验进行数据分析
3.2.1 检验步骤和计算过程
应用Fisher精确检验进行数据分析,可以遵循以下步骤:
-
构建2x2列联表 :首先需要根据研究问题收集到的数据构建一个2x2列联表。列联表中的每个单元格应记录特定事件在分类变量下的频数。
-
设定零假设和备择假设 :零假设通常假设两个分类变量是独立的,而备择假设则认为它们之间存在某种关联。
-
应用Fisher精确检验 :将列联表数据输入Fisher精确检验计算方法中,计算出具体的概率值(P值)。
-
分析结果 :根据计算出的P值,与预定的显著性水平(如0.05)进行比较,决定是否拒绝零假设。
具体的计算过程可由统计软件来完成,如R、Python中的SciPy库,或者MATLAB等。
3.2.2 实际案例分析
为了具体说明Fisher精确检验的应用,我们考虑一个简单的医学研究案例。假设研究者想探究一种新药物对某种疾病的疗效,并进行了一个随机对照试验。试验结果构建如下2x2列联表:
| | 治疗组 | 对照组 | 总计 | |-------|--------|--------|------| | 痊愈 | 20 | 10 | 30 | | 未痊愈| 5 | 15 | 20 | | 总计 | 25 | 25 | 50 |
在这个案例中,零假设是新药物和治疗效果之间没有关联(即独立),备择假设是新药物确实更有效果。
使用Fisher精确检验公式或软件工具,计算出的P值远小于0.05(例如P=0.01),表明我们有足够的证据拒绝零假设,支持新药物与更高的治愈率之间存在关联。
3.3 实际案例分析的扩展讨论
进一步深入探讨Fisher精确检验在实际应用中的灵活性和局限性。首先,Fisher精确检验虽然在小样本下表现良好,但当数据结构更复杂时,比如存在混杂变量或需要考虑匹配设计时,单纯的Fisher精确检验可能不足以提供完整的分析结果。
在复杂数据分析中,研究者可以结合回归模型等方法,通过调整混杂变量来精确估计变量间的关系。这通常是Fisher精确检验的补充,而非替代。
此外,当进行Fisher精确检验时,需要对数据的收集和整理有严格要求。任何数据的录入错误、分类不准确都会影响最终的分析结果。因此,在实际操作中,除了注重统计方法本身,数据质量和处理过程同样需要引起足够的重视。
最后,虽然Fisher精确检验提供了一种强有力的统计工具,但它并不是所有情况下的最佳选择。在实践中,研究者应结合研究设计、数据特点以及研究问题的具体需求,选择最合适的统计检验方法,以确保研究结论的准确性和可靠性。
通过本章节的介绍,我们可以看到Fisher精确检验作为一种统计工具,其理论基础、应用步骤和实际案例分析构成了完整的应用框架。对科研工作者而言,了解并掌握Fisher精确检验的原理与应用对于处理和解释分类数据至关重要。
4. MID-P方法的介绍与实践
4.1 MID-P方法的提出背景和原理
4.1.1 MID-P方法与传统方法的比较
在统计学中,特别是在小样本数据的精确检验中,传统的方法如Fisher精确检验提供了严格统计推断,但在某些情况下可能导致过度保守的结论。 MID-P方法作为对传统精确检验的一种改良,既考虑了数据的离散性,又对P值进行了适度的修正,旨在提供更为合理的统计推断。
MID-P方法在两个假设之间的P值计算中引入了一个中间值,既不像Fisher精确检验那样严格地只计算确切概率,也不像连续性校正后的卡方检验那样简单地将离散分布转换为连续分布。这种方法在概率计算中加入了概率质量的一部分,从而使得检验结果更加平滑,更接近真实情况。
4.1.2 MID-P方法的统计优势
MID-P方法之所以受到推崇,主要是因为它在控制第一类错误(即错误地拒绝了真实的零假设)方面与Fisher精确检验一样严格,同时在某些情况下,其检验功效(即正确拒绝错误零假设的概率)优于传统的Fisher精确检验。此外,MID-P方法在处理小样本数据时,比传统的卡方检验等近似方法更加准确。
4.2 MID-P方法的操作流程和应用实例
4.2.1 MID-P方法的计算步骤
MID-P方法的核心是将每个单元格的实际观察频数与期望频数之间的差异通过特定的权重来调整,计算加权后的P值。具体计算步骤如下:
- 对于每一个2x2列联表的单元格,计算出观察频数和期望频数。
- 对于期望频数大于一定值的单元格(通常是5),按照Fisher精确检验计算P值的两尾概率。
- 对于期望频数较小的单元格,需要进行连续性校正或使用适当的概率质量函数进行权重调整。
- 将步骤2和步骤3得到的P值进行加权求和,得到加权后的P值。
- 根据加权后的P值,与预先设定的显著性水平进行比较,从而做出统计推断。
4.2.2 结合实际数据的案例分析
假设研究者正在研究某种药物对心脏病的影响,以下是研究得到的2x2列联表:
| | 发病 | 未发病 | 合计 | |----------|------|--------|------| | 药物组 | 15 | 5 | 20 | | 对照组 | 10 | 10 | 20 | | 合计 | 25 | 15 | 40 |
通过计算,我们可以得出MID-P方法下的P值。在这个例子中,药物组发病的单元格和对照组未发病的单元格具有较高的期望频数,因此可以直接使用Fisher精确检验的两尾概率计算方法。对于其他单元格,则需要进行适当的权重调整。最后,将所有P值进行加权求和,得到最终的MID-P值。
然后,我们可以根据这个MID-P值和预先设定的显著性水平(如0.05)来进行决策。如果MID-P值小于显著性水平,则拒绝零假设,认为药物对心脏病有显著影响;否则,无法拒绝零假设。
为了具体展示这个过程,我们可以用MATLAB编程实现MID-P方法的计算,以下是计算MID-P值的MATLAB代码示例:
function mid_p_value = calculateMIDP(contingency_table)
% 输入参数是一个4x2的矩阵,其中包含了2x2列联表的数据
% 输出参数是计算得到的MID-P值
% 对每个单元格计算期望频数和观察频数之间的差异
% 然后根据MID-P方法进行权重调整
% 示例中只展示了核心计算逻辑,完整的计算过程包括各种边界情况处理
% 及权重计算等,这里不进行详细展开
% 假设已经完成了权重的计算,此函数返回计算得到的MID-P值
end
由于具体实现依赖于具体的研究背景和数据特点,上面的代码只是一个计算MID-P值的框架。在实际应用中,我们需要根据数据的性质和研究的需求,来填充具体的计算细节。在本章节接下来的部分,我们将详细讨论如何根据真实数据来具体实现MID-P方法的计算。
5. 统计独立性检验与P值的计算
5.1 统计独立性检验的理论框架
5.1.1 独立性检验的概念及其统计意义
统计独立性检验是统计学中的一个基本概念,它用于判断两个变量之间是否存在关联。在统计学中,如果两个变量独立,则它们的联合概率分布可以表示为各自概率分布的乘积。换言之,一个变量的出现不会影响另一个变量发生的概率。独立性检验允许我们在样本数据基础上,推断两个变量在整个总体中是否可能独立。
独立性检验的统计意义在于,它提供了对变量间关系强度的量化评估。在实际应用中,例如医学、生物学、心理学、市场研究等领域,检验变量之间的独立性对于理解和预测行为模式至关重要。通过对独立性的检验,研究者可以排除变量间无关的可能性,进而深入研究变量间可能存在的因果关系。
5.1.2 2x2列联表中独立性检验的方法
在2x2列联表中,独立性检验主要采用卡方检验、Fisher精确检验等方法。2x2列联表由两行两列组成,通常用来表示两个二分类变量的频数分布。在检验独立性时,我们通常对观察到的频数与独立性假设下的期望频数进行比较。
在2x2列联表的情况下,卡方检验通过计算卡方统计量来评估观察数据与期望数据的差异程度。当样本量较小时,Fisher精确检验则更为适合。Fisher精确检验基于超几何分布计算概率,它不依赖于大样本理论,因此在小样本情况下的应用更为精确。
5.2 P值的计算及解释
5.2.1 P值的定义及其统计决策中的作用
P值是在原假设为真的条件下,观察到当前样本结果或更极端结果的概率。在统计假设检验中,P值用来衡量数据与原假设之间的一致性程度。一个较小的P值表示数据与原假设的不一致性较大,从而增加了拒绝原假设的可能性。
P值在统计决策中的作用体现在它为研究者提供了一种量化的决策标准。通常情况下,如果P值小于事先设定的显著性水平(如0.05),研究者就拒绝原假设,认为变量之间存在统计学上的显著关系。反之,如果P值大于显著性水平,则不拒绝原假设,认为没有足够的证据证明变量间有显著关联。
5.2.2 利用Fisher精确检验计算P值
Fisher精确检验是一种精确概率检验,适用于小样本数据。当样本数据满足以下条件时,可以使用Fisher精确检验来计算P值:
- 样本量较小,不足以使用大样本近似检验方法;
- 数据分布不满足大样本理论的假设,如期望频数过小。
Fisher精确检验计算P值的过程涉及到对列联表中的观察频数和所有可能的频数组合进行比较。在MATLAB中,我们可以通过编写或使用现有的工具函数来计算P值。例如,可以使用MATLAB内置函数 fisherTest
来计算2x2列联表的Fisher精确检验P值。以下是一个简单的示例代码:
% 假设有一个2x2列联表,其中a, b, c, d分别代表四个格子中的频数
a = 5;
b = 10;
c = 12;
d = 13;
% 创建列联表
contingencyTable = [a b; c d];
% 使用fisherTest进行检验
[h, pValue, ci, stats] = fisherTest(contingencyTable);
% 显示P值
disp('P-value from Fisher Exact Test:');
disp(pValue);
在这段代码中, fisherTest
函数返回了四个输出: h
表示是否拒绝原假设, pValue
是计算出的P值, ci
是置信区间, stats
是检验统计量。对于统计独立性检验而言,重点关注的是 pValue
,它代表了在原假设(两个变量独立)为真的条件下,当前观察值或更极端值出现的概率。
通过对P值的分析和解释,研究者可以进一步评估变量间的关系,并在研究中给出明确的统计结论。在实际应用中,Fisher精确检验提供了一种可靠的方法来处理小样本数据的独立性检验,尤其是在医学和生物学研究中,这种方法得到了广泛应用。
6. OR值和置信区间的解读与应用
6.1 OR值的统计学意义
6.1.1 OR值的计算方法
OR值,即比值比(Odds Ratio),是衡量两个事件发生概率比值的统计指标,经常用于流行病学研究,特别是在2x2列联表中比较暴露组和非暴露组之间的风险差异。在医学和生物学研究中,OR值提供了一种量化风险关联的方式。
计算OR值的基本步骤如下:
- 定义事件发生与否(例如疾病/无疾病)和暴露与否(例如药物/无药物)。
- 在列联表中记录每个组合的发生频数。
- 根据频数计算各组的比值(odds),即暴露组/非暴露组的比值和病例组/对照组的比值。
- 计算暴露组和非暴露组的比值比,即暴露病例比值与暴露对照比值的比。
公式可以表示为: [ OR = \frac{a/b}{c/d} = \frac{ad}{bc} ]
其中,(a)、(b)、(c)、(d)分别是列联表中的四个单元格的频数。
6.1.2 OR值在医学和生物学研究中的应用
在医学研究中,OR值可以用于评估特定暴露(如吸烟、某种药物治疗)与疾病风险之间是否存在关联,并且可以对这种关联进行量化。OR值大于1表示存在正相关,即暴露增加的风险;OR值小于1表示存在负相关,即暴露减少的风险;OR值等于1表示没有关联。
例如,在一项病例对照研究中,研究者通过2x2列联表来分析吸烟与肺癌之间的关联:
| | 肺癌病例 | 非肺癌对照 | 合计 | |---|--------|----------|-----| | 吸烟者 | a | b | a+b | | 非吸烟者 | c | d | c+d | | 合计 | a+c | b+d | 总样本量 |
通过计算(OR = \frac{ad}{bc}),研究者可以得出吸烟与肺癌之间的关联程度。若(OR > 1),表明吸烟者患肺癌的风险高于非吸烟者。
6.1.3 OR值的解释和应用场景
OR值的解释要结合研究设计和统计学原理。在病例对照研究中,OR值提供了一个估计的相对风险度量,但需要注意的是,这种设计往往不能得出因果关系。在队列研究中,OR值可用来估计相对风险,但其准确度可能不如相对风险(Relative Risk, RR)的直接计算。
在应用时,研究者通常会结合置信区间来更准确地解释OR值,这将在下一节详细讨论。
6.2 置信区间的构建与解释
6.2.1 置信区间的概念及其重要性
置信区间(Confidence Interval, CI)是统计学中对一个总体参数的区间估计,表示我们对参数真实值的信心程度。一个(100(1-\alpha)\%)置信区间表明,如果从同一总体中重复抽取样本并计算置信区间,有(100(1-\alpha)\%)的机会这个区间包含总体参数的真实值。置信区间的宽度反映了估计的精确度,区间越窄,我们对估计的信心越足。
6.2.2 结合实际案例的置信区间计算与应用
为计算OR值的置信区间,可以使用以下公式:
[ CI = e^{\ln(OR) \pm Z \cdot SE(\ln(OR))} ]
其中,(SE(\ln(OR)))是(\ln(OR))的标准误差,(Z)是对应于给定置信水平的Z分数。
下面是一个简化的例子来展示置信区间的计算:
假设某研究计算得到OR值为3.0,标准误差为0.2。在95%置信水平下,Z分数约为1.96。根据公式:
[ CI = e^{\ln(3.0) \pm 1.96 \cdot 0.2} ]
计算得到置信区间为:
[ CI = (1.7, 5.3) ]
这意味着我们有95%的信心认为真实总体的OR值在这个区间内。如果该区间包含1,则不能拒绝总体OR值为1的零假设,表明暴露与结果之间没有统计学上的显著关联。
6.2.3 置信区间在报告研究结果中的作用
在研究报告中,置信区间不仅提供了参数估计的精确度信息,而且反映了研究结果的可靠程度。置信区间越宽,表明研究结果的不确定性越大,需要更大的样本量来进行更精确的估计。
报告中应详细描述置信区间,包括置信水平、计算方法和任何可能影响其准确性的因素。在解释置信区间时,研究者应该强调参数的真实值可能在区间之外的可能性,特别是当区间包含了一个无效应值(如OR值的1)时,研究结果应当更加谨慎地解释。
例如,在一个药物治疗效果的随机对照试验中,如果计算得到的OR值为2.5,95%置信区间为1.2至5.0,研究者可以有信心地说,该药物至少使治疗效果增加了1.2倍,最多达到5.0倍。相反,如果置信区间包括1(如0.8至3.5),则表明药物效果可能没有统计学上的显著性,或研究结果的不确定性较大。
通过精确计算和合理解释置信区间,研究者能够为临床决策提供更为可靠的数据支持,同时提醒临床医生和研究人员注意研究结果的局限性和不确定性。
7. MATLAB在Fisher精确检验中的工具函数及应用
在进行统计分析时,Fisher精确检验是一种强有力的工具,尤其适用于样本量较小的数据集。MATLAB作为一款强大的数学计算和工程软件,提供了相应的工具函数以实现Fisher精确检验。本章将详细介绍MATLAB中的 FisherExtest.m
函数,并通过示例探讨其在实际研究中的应用。
7.1 MATLAB中的 FisherExtest.m
函数详解
7.1.1 FisherExtest.m
函数的参数和功能
FisherExtest.m
是MATLAB中用于执行Fisher精确检验的一个函数。该函数提供了两个主要参数:
-
contingency_table
: 一个二维数组,表示2x2列联表。这个表格需要包含四个单元格的频数,通常用[a b; c d]
的形式表示,其中a
、b
、c
和d
分别是列联表中的四个单元格频数。 -
alpha
: 检验的显著性水平(通常为0.05),用于计算P值。
函数返回两个结果:
-
p_value
: 计算得到的P值。 -
hypothesis
: 检验的假设结论,如果P值小于alpha
,则返回1
表示拒绝原假设;如果P值大于或等于alpha
,则返回0
表示接受原假设。
7.1.2 函数使用示例及结果解读
假设我们有一个2x2列联表 [4 2; 3 1]
,我们希望使用 FisherExtest.m
函数来检验两个分类变量之间的独立性。首先,我们需确保已经将 FisherExtest.m
函数保存在MATLAB的路径中。
示例代码如下:
% 定义列联表
contingency_table = [4 2; 3 1];
% 执行Fisher精确检验
[p_value, hypothesis] = FisherExtest(contingency_table, 0.05);
% 显示结果
fprintf('P-value: %f\n', p_value);
if hypothesis == 1
fprintf('Reject the null hypothesis.\n');
else
fprintf('Fail to reject the null hypothesis.\n');
end
输出结果可能会是:
P-value: 0.375000
Fail to reject the null hypothesis.
上述结果表明,在显著性水平 alpha = 0.05
的情况下,我们没有足够的证据拒绝原假设,即两个分类变量是独立的。
7.2 统计结果在实际研究中的应用
7.2.1 结合具体研究项目的统计分析
在实际研究项目中,Fisher精确检验可以帮助研究者评估两个分类变量之间是否存在统计学上的显著关联。例如,在医学研究中,研究者可能会检验某药物是否与特定的副作用独立。通过收集数据并构建列联表,然后使用 FisherExtest.m
函数,研究者能够得出是否有足够的统计证据表明药物与副作用之间存在关联。
7.2.2 对统计结果进行专业解读与应用建议
根据Fisher精确检验的P值结果,研究人员可以做出合理的结论。如果P值小于显著性水平 alpha
,则表明有统计学证据支持两个变量之间存在关联;如果P值大于或等于 alpha
,则表明现有数据不能证明变量之间存在显著关联。
在得到统计结果后,研究人员还应考虑其他统计方法的使用和结果的交叉验证。此外,研究结果应结合领域知识和现实情况综合评估,以作出最佳决策。
在MATLAB中,除了 FisherExtest.m
函数,还可以结合使用其他统计函数和工具箱进行数据分析。这为研究者提供了强大的工具来处理复杂的数据和执行深入的统计测试,从而获得更准确的研究结论。
简介:该项目专注于统计分析中的2x2列联表分析,运用Fisher的精确检验和MID-P方法来评估表格行与列的独立性。Fisher精确检验用于判断分类变量间的关联性,并提供准确的P值,尤其适用于样本量较小或期望频数低的情况。MID-P方法是Fisher检验的改进,提供更为保守的统计推断,减少假阳性错误。在MATLAB环境下,用户通过调用 FisherExtest.m
函数来执行检验,该函数能够计算P值、OR值和置信区间,并通过 license.txt
文件了解代码的使用权限。该技术在生物医学和社会科学研究中有着广泛的应用。