自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1805)
  • 收藏
  • 关注

原创 HY-MT1.5如何实现格式化翻译?上下文感知部署教程新手必看

HY-MT1.5系列模型凭借其格式化翻译能力上下文感知机制和术语干预支持,为开发者提供了企业级翻译能力的开源替代方案。无论是轻量级的1.8B模型还是高性能的7B版本,都能在各自适用场景中发挥出色表现。本文详细解析了:- 格式化翻译背后的占位符保留机制- 上下文翻译的滑动缓存与注意力扩展- 如何通过Docker镜像一键部署- Web界面与API两种使用方式- 实际落地中的常见问题与优化策略。

2026-01-10 17:28:28 291

原创 混元翻译模型1.5参数详解:1.8B与7B版本对比

HY-MT1.5系列翻译模型的发布,体现了腾讯在机器翻译领域的深厚积累与工程创新能力。凭借出色的性能-资源比,成为边缘侧实时翻译的理想选择,推动AI翻译走向终端普及;则代表了当前开源翻译模型的顶尖水平,在长文本理解、混合语言处理和格式保真方面树立新标杆。二者共同支持术语干预、上下文感知和格式化翻译三大高级功能,显著提升了实际业务中的可用性和可靠性。

2026-01-10 16:26:20 133

原创 AI智能实体侦测服务金融科技:风险信号实体识别

实体类型缩写典型示例风控意义人名PER马云、王健林、张勇关联实控人、董监高、负面人物追踪地名LOC杭州、深圳、浙江省区域经济风险、地方政策影响评估机构名ORG阿里巴巴、中信证券、国家税务总局企业信用监控、关联交易识别通过将原始文本转化为结构化的(实体, 类型)对集合,可进一步接入知识图谱系统,实现风险传播路径推演关联方挖掘黑名单匹配等高级功能。本文全面介绍了基于 RaNER 模型的 AI 智能实体侦测服务在金融科技领域的应用实践。

2026-01-10 15:45:19 305

原创 AI智能实体侦测服务降本增效:轻量级模型实现高性能NER任务

调用RaNER模型进行预测# 返回结构化结果"data": [})"data": [{"entity": "张伟", "type": "PER", "start": 0, "end": 2, "confidence": 0.987},{"entity": "北京市", "type": "LOC", "start": 10, "end": 13, "confidence": 0.965},

2026-01-10 14:13:33 417

原创 RaNER模型跨领域迁移:通用实体识别到垂直领域

本文系统阐述了如何将基于ModelScope平台的RaNER模型从通用领域成功迁移至垂直场景,实现了高精度、低延迟的中文命名实体识别服务。理论层面:揭示了Span-based模型在跨领域迁移中的优势——更强的泛化能力和更清晰的决策边界;方法层面:提出了“预训练+微调+规则融合”的三级优化框架,显著提升垂直领域F1值;工程层面:实现了WebUI与API双模交互系统,支持开发者快速集成与业务落地。

2026-01-10 13:26:31 235

原创 RaNER模型性能优化:提升实体识别准确率的3种方法

在构建基于 RaNER 的 AI 智能实体侦测服务过程中,原始模型虽已具备良好的通用识别能力,但在真实业务场景中仍面临准确率瓶颈。领域自适应微调:通过在目标领域数据上继续训练,显著提升模型的专业理解力;外部词典增强:引入结构化知识库,弥补模型对新词、专有名词的认知盲区;多模型集成投票:融合多种架构的优势,实现精度与召回的双重提升。这三种方法可单独使用,也可组合实施。

2026-01-10 12:57:44 545

原创 RaNER模型部署优化:降低中文实体识别服务延迟

通过对 RaNER 模型的全链路优化,我们成功将中文实体识别服务的平均延迟从780ms 降至 180ms,降幅达77%,完全满足实时交互需求。模型层:采用 ONNX 转换 + 动态量化,减小体积、加快加载;推理层:引入 FlashAttention 思想与 LRU 缓存,提升单次执行效率;服务层:通过异步化、批处理、多进程部署,增强并发处理能力。

2026-01-10 12:46:02 442

原创 AI实体识别系统:RaNER模型日志监控方案

AI 实体识别系统基于达摩院 RaNER 模型,成功实现了中文命名实体的高精度抽取,并通过集成 Cyberpunk 风格 WebUI 和 REST API,构建了一个兼具实用性与美观性的智能日志监控工具。自动化信息提取:摆脱人工筛查,显著提升日志分析效率;可视化交互体验:彩色标签高亮让关键信息一目了然;工程友好集成:双模交互设计满足从演示到生产部署的全链路需求。未来,可进一步拓展至日志分类、情感分析、异常检测等复合任务,打造一体化智能运维分析平台。

2026-01-10 12:40:30 90

原创 AI智能实体侦测服务上线难?WebUI双模交互部署教程详解

请求地址请求方法:POST本文详细介绍了基于RaNER模型的AI智能实体侦测服务✅开箱即用:通过Docker镜像封装,屏蔽复杂依赖,实现一键启动;✅双模交互:同时提供WebUI可视化操作与标准化API接口,满足多样化需求;✅中文优化:依托达摩院RaNER模型,针对中文命名实体识别做了深度优化,准确率高;✅实用性强:支持人名、地名、机构名自动抽取与彩色高亮,适用于舆情分析、文档处理等多个场景。

2026-01-10 12:21:41 742

原创 AI智能实体侦测服务教育科研:学生论文实体识别

URL请求体(JSON)json{ "text": "李明是清华大学的教授,他在北京发表了重要演讲。" }响应体(JSON)json{ "text": "李明", "start": 0, "end": 2, "type": "PER" },{ "text": "清华大学", "start": 3, "end": 7, "type": "ORG" },{ "text": "北京", "start": 10, "end": 12, "type": "LOC" }],

2026-01-10 11:39:19 449

原创 Qwen3-VL-WEBUI快速入门:三步完成首次推理调用

本文系统介绍了的核心能力与快速上手路径,帮助你在极短时间内完成首次多模态推理调用。Qwen3-VL 是当前最强的 Qwen 多模态模型,具备视觉代理、空间推理、长上下文、视频理解等多项领先能力;Qwen3-VL-WEBUI 提供了一键式部署方案,通过Docker镜像简化了环境配置,支持单卡4090D即可运行;三步完成推理调用:部署镜像 → 等待启动 → 访问网页执行推理,全流程不超过5分钟;支持丰富应用场景:从OCR识别、数学解题到GUI自动化、前端代码生成,覆盖多种实用需求。

2026-01-10 09:49:31 428

原创 阿里Qwen3-VL部署案例:智能视觉问答系统搭建步骤详解

本文系统介绍了如何利用阿里开源的技术选型优势:Qwen3-VL 凭借强大的视觉代理、空间感知与长上下文能力,成为多模态任务的理想选择;部署便捷性:通过官方预置镜像,可在单卡环境下实现一键部署,大幅降低入门门槛;功能完整性:支持图文混合输入、复杂推理与结构化输出,满足真实业务需求;可扩展性强:底层代码清晰,便于二次开发为 API 服务或集成至现有系统。

2026-01-10 09:34:43 547

原创 Qwen3-VL音乐可视化:乐谱识别应用

本文系统探讨了Qwen3-VL 在乐谱识别与音乐可视化中的创新应用,展示了其作为新一代视觉-语言模型的强大潜力。高精度 OCR 与空间感知:成功解析复杂五线谱结构,准确率优于传统工具。多轮对话式推理:通过 prompt chaining 实现从图像到结构化数据的转化。端到端部署便捷性:基于 Qwen3-VL-WEBUI 镜像,可在单卡 4090D 上快速部署。可扩展应用场景:支持音乐教育、AI 作曲辅助、无障碍阅读等多个方向。

2026-01-10 09:07:22 253

原创 Qwen3-VL数学建模:问题求解步骤指南

Qwen3-VL-WEBUI 作为阿里开源的一站式多模态推理平台,凭借其强大的视觉理解、OCR 增强和多模态推理能力,为数学建模类任务提供了前所未有的自动化解决方案。通过本文介绍的“五步求解法”——图像输入 → 要素抽取 → 模型构建 → 推理求解 → 结果输出,用户可以高效地完成从试题识别到答案生成的全流程。更重要的是,Qwen3-VL 支持 Thinking 模式下的深度推理,使其不仅能做“计算”,更能做“思考”,真正迈向通用人工智能代理(General AI Agent)的方向。

2026-01-10 08:14:46 507

原创 Qwen2.5-7B技术分享:长文本生成的质量控制方法

当生成文本接近上限时,模型容易遗忘早期设定。我们采用定期“锚定”关键信息的方式,动态维护一个精简上下文摘要。请用不超过 {max_summary_tokens} 个 token 总结以下对话的核心要点:- 主题是什么?- 已完成哪些部分?- 下一步要写什么?- 需要注意哪些风格要求?内容如下:{full_history[-4096:]} # 截取最近上下文"""# 在每章结束后更新 anchor将插入后续 prompt 开头,作为“记忆锚点”,显著改善长程一致性。

2026-01-10 06:23:42 422

原创 Qwen2.5-7B部署降本增效:混合精度推理实战优化教程

本文系统介绍了Qwen2.5-7B在消费级 GPU(如 4×RTX 4090D)上的混合精度推理部署方案,涵盖从技术选型、镜像部署到代码实现的全流程。Qwen2.5-7B 具备优秀的工程友好性:GQA 架构、RoPE 编码、RMSNorm 设计使其非常适合长上下文、低延迟推理;混合精度(FP16)是降本增效的关键:相比 FP32,显存减半,推理加速 30% 以上,且质量几乎无损;vLLM 是理想推理框架。

2026-01-10 05:01:44 446

原创 Qwen2.5-7B法律文书:合同分析与生成案例

Qwen2.5-7B 凭借其超长上下文支持、结构化输出能力和中文语境优势,已成为法律文书智能化处理的有力工具。✅ 能准确从非结构化合同中提取结构化信息(JSON)✅ 具备基础法律合规判断能力,辅助风险识别✅ 可生成符合行业规范的合同初稿,大幅提升起草效率更重要的是,其开源属性支持私有化部署,保障了法律数据的安全性和合规性,适用于律所、企业法务、SaaS 法务平台等多种场景。

2026-01-10 04:10:40 99

原创 Qwen2.5-7B文本相似度:语义匹配优化策略

本文系统探讨了如何基于Qwen2.5-7B构建高性能文本相似度系统,涵盖模型特性分析、实践方案设计与高级优化策略。Qwen2.5-7B 凭借其长上下文、多语言和强推理能力,成为语义匹配任务的理想选择,尤其适用于复杂意图识别和跨语言对齐场景。通过提示工程可实现零样本语义判断,无需微调即可快速落地,降低开发门槛。建议采用“轻量检索 + LLM 精排”的混合架构,兼顾效率与准确性,在实际业务中更具可行性。注意控制 temperature 参数并引入缓存机制,保障系统稳定性与响应速度。

2026-01-10 03:33:05 294

原创 Sambert-HifiGan在多模态交互系统中的应用

Sambert-HifiGan 模型凭借其高质量声码器 + 多情感语义建模的能力,已成为当前中文情感语音合成领域的标杆方案。结合 Flask 构建的 WebUI 与 API 服务,极大降低了使用门槛,真正实现了“开箱即用”。

2026-01-09 17:52:59 569

原创 Sambert-HifiGan极限挑战:能否处理超长文本语音合成?

Sambert-HifiGan 在中文多情感语音合成领域仍处于领先地位✅ 高自然度:韵律建模优于传统Tacotron系列✅ 快速部署:支持CPU推理,适合边缘设备✅ 情感可控:提供多种预设情感模式✅ 开源生态:ModelScope平台持续更新维护。

2026-01-09 15:05:17 115

原创 LangChain+TTS构建语音Agent:让AI助手真正‘开口说话’

import os# 加载 Sambert-Hifigan 模型(伪代码示意)emotion = data.get('emotion', 'neutral') # 支持情感参数扩展# 生成唯一文件名try:# 执行语音合成(注意:实际需传入情感控制参数)💡说明:以上代码展示了核心 API 结构。实际部署中建议增加缓存机制、并发限流、日志记录等功能以提升生产可用性。✅ 深入理解了Sambert-Hifigan 多情感 TTS 的技术原理✅ 部署了一个。

2026-01-09 15:00:11 834

原创 一文说清es可视化管理工具的本地部署流程

详细梳理es可视化管理工具在本地环境中的部署步骤,从环境准备到服务启动全程覆盖,帮助开发者快速上手并高效管理Elasticsearch实例,提升操作便捷性与维护效率。

2026-01-09 14:55:16 629

原创 Markdown文档转语音:Sambert-Hifigan自动化实践

本文完整展示了如何基于ModelScope 的 Sambert-HifiGan 模型,构建一套可用于Markdown文档转语音的自动化系统。我们不仅实现了基础的文本转语音功能,更通过 WebUI 与 API 双通道设计,提升了系统的可用性与集成灵活性。

2026-01-09 13:57:01 496

原创 Sambert-HifiGan在智能车载系统的语音交互优化

成功部署Sambert-HifiGan中文多情感TTS模型于车载环境构建了稳定、高效、易用的Flask服务框架,彻底解决依赖冲突提供WebUI+API双通道访问方式,兼顾开发与测试需求实现CPU级优化,满足车载设备资源限制条件。

2026-01-09 13:27:35 596

原创 下一代语音合成技术前瞻:上下文感知的情感表达可能吗?

成功部署Sambert-Hifigan 中文多情感语音合成系统,支持 Web 与 API 双模式访问;解决了datasetsnumpyscipy等关键依赖冲突,确保环境长期稳定运行;实现了基于情感标签的可控语音生成,音质自然流畅,适合实际项目集成;提供完整可运行代码,涵盖模型调用、Flask 服务、前后端交互全流程。

2026-01-09 12:25:23 392

原创 智能驾驶域中CANFD带宽优化的项目应用

针对智能驾驶域中通信效率的提升需求,深入探讨CANFD带宽优化的关键技术与实际应用。通过项目落地验证,有效缓解了高负载场景下的数据拥堵问题,显著提升了系统实时性与稳定性,为CANFD在复杂车载网络中的部署提供了可复制的解决方案。

2026-01-09 12:18:00 217

原创 科研论文图注提取:结合OCR与NLP构建知识图谱

本OCR服务基于架构,在ModelScope平台的经典预训练模型基础上进行工程优化,专为科研文档中的复杂图注场景设计。相比传统CNN+CTC或轻量级ConvNextTiny模型,CRNN通过引入双向LSTM序列建模能力,显著提升了对连续字符序列的上下文理解能力,尤其适用于中文长句、手写体、模糊字体等低质量图像的文字识别任务。💡 为什么选择CRNN?CRNN的核心优势在于其“卷积提取特征 + 循环网络建模序列 + CTC损失对齐”的三段式架构:- 卷积层负责从图像中提取局部视觉特征;

2026-01-09 09:29:31 517

原创 无需AI专家:CRNN OCR快速部署方案

URL参数image: 图片文件字段denoise(可选): 是否启用去噪,默认true本文介绍的CRNN OCR 快速部署方案,本质上是一次“AI平民化”的尝试。模型层面:选用成熟稳定的CRNN架构,兼顾精度与效率工程层面:封装WebUI与API,屏蔽底层复杂性部署层面:全CPU运行,无需专业AI硬件支持这使得即使是非AI背景的开发人员,也能在10分钟内完成OCR服务的搭建与集成。

2026-01-09 08:59:20 483

原创 <!doctype html> <html lang=“zh-cn“>识别:中文网页截图精准提取

CRNN(Convolutional Recurrent Neural Network)是一种结合卷积神经网络(CNN)、循环神经网络(RNN)和CTC(Connectionist Temporal Classification)损失函数的端到端序列识别模型。将图像视为一维字符序列进行建模,而非逐字分类这使得它特别适合处理不定长文本行,如网页标题、段落、表格内容等。本文深入剖析了基于CRNN的高精度OCR系统在中文网页截图提取中的应用价值。通过模型升级 + 智能预处理 + 双模接口设计。

2026-01-09 08:28:00 486

原创 如何为翻译服务设计友好的用户界面

本镜像基于 ModelScope 的模型构建,专注于提升中英翻译中的语义连贯性与语言自然度。相比传统统计或早期神经翻译模型,CSANMT 引入了上下文感知机制和语义对齐模块,在长句、复杂句式和文化差异表达上表现尤为出色。系统已集成Flask 轻量级 Web 框架,提供直观的双栏式对照界面,支持实时输入与即时反馈。同时修复了原始模型输出格式不统一导致的解析异常问题,确保在各种输入场景下均能稳定返回结构化结果。💡 核心亮点高精度翻译:达摩院 CSANMT 架构专精中英方向,译文更符合英语母语者的阅读习惯。

2026-01-09 07:34:51 462

原创 翻译API限流设计:防止恶意请求的最佳实践

实践要点 | 推荐做法 | 说明 |算法选择| 使用令牌桶(Token Bucket) | 平衡突发容忍与长期控制 |存储后端| Redis集中管理状态 | 支持集群部署与快速查询 |限流维度| IP + API Key复合识别 | 区分匿名与认证用户 |规则设计| 多层级组合限流 | 如“5次/秒 + 30次/分钟” |用户体验| 返回清晰429错误 | 包含字段 |运维能力| 支持动态配置热更新 | 无需重启服务调整策略 |安全配套。

2026-01-09 07:18:02 597

原创 M2FP在远程医疗中的创新应用

M2FP 多人人体解析服务通过高精度分割 + 可视化拼图 + Web服务集成三位一体的设计,成功将前沿AI能力下沉至实际医疗场景。零报错环境配置:解决了 PyTorch 与 MMCV 的经典兼容难题开箱即用体验:无需深度学习背景即可快速接入面向医疗优化:支持多人、遮挡、家庭复杂光照等现实挑战与电子病历系统对接,实现“图像→结构化体征→诊疗记录”闭环增加异常区域检测模块,自动识别疑似皮损、肿胀、畸形等病理特征支持移动端部署,开发Android/iOS SDK,赋能家庭健康APP📌 最佳实践建议。

2026-01-08 18:17:16 500

原创 智能健身教练:基于M2FP的动作标准度评估系统

M2FP 多人人体解析服务凭借其高精度、强鲁棒、易部署的特点,为构建低成本智能健身教练系统提供了理想的技术底座。通过将其与姿态建模、动作比对算法结合,我们实现了从“看得清”到“判得准”的跨越。未来可进一步拓展方向包括:- 结合时序模型(如 LSTM、Transformer)实现全过程动作轨迹预测- 引入 3D 重建技术估算关节角度与力矩- 构建个性化训练计划推荐引擎💡 最终愿景:让每一位普通人都能拥有一位“看得懂你动作”的 AI 私教,在家也能科学锻炼、远离运动损伤。

2026-01-08 18:02:58 535

原创 揭秘M2FP:如何实现多人场景下的精准身体部位分割

M2FP 多人人体解析服务凭借其高精度、强鲁棒性、易用性三大优势,已成为当前少有的可在纯 CPU 环境下稳定运行的工业级人体解析解决方案。无论是用于虚拟试衣、动作分析、智能安防还是内容审核,它都能提供可靠的技术支撑。技术层面:基于 Mask2Former 架构,实现像素级精准分割工程层面:攻克 PyTorch + MMCV 兼容难题,确保长期稳定产品层面:集成 WebUI 与 API,降低使用门槛部署层面:全面适配 CPU,拓宽应用场景。

2026-01-08 17:42:33 577

原创 科研数据共享:实验记录自动翻译促进国际合作

在全球化科研时代,信息流动的速度决定了创新的节奏。本 AI 智能中英翻译服务以高精度、轻量化、易集成为核心设计理念,致力于打破语言壁垒,推动实验数据的无障碍共享。无论是个人研究者撰写英文论文,还是跨国团队协同开展项目,这套系统都能成为您科研工作流中的“语言加速器”。🎯 实践建议1. 将翻译 API 集成进您的电子实验记录本(ELN),实现“一次录入,双语归档”;2. 在组会前批量翻译汇报材料,提升沟通效率;3. 利用缓存机制建立常用术语库,确保长期使用的表达一致性。语言不应是科学的障碍。

2026-01-08 16:50:45 623

原创 从零开始学es查询语法:手把手实现简单搜索

通过实际操作步骤详解es查询语法的核心用法,帮助初学者快速上手并实现简单搜索功能。深入浅出地讲解常见查询结构与使用技巧,让es查询语法不再难懂。

2026-01-08 14:38:34 655

原创 Z-Image-Turbo最佳实践:打造高清产品概念图的秘诀

✅必须做到- 使用五段式结构编写提示词- 设置推理步数 ≥ 50,CFG ∈ [8.0, 9.5]- 输出尺寸优先选择 1024×1024- 负向提示词包含“低质量、模糊、多余部件”🔧进阶优化- 加入专业摄影术语提升真实感- 构建完整使用场景增强代入感- 利用种子值复现理想结果🚀工程落地- 通过API实现批量生成- 建立标准化命名与存储规范- 结合后期处理工具链(超分、裁剪、调色)Z-Image-Turbo不仅是AI绘画工具,更是下一代产品创新的工作流加速器。

2026-01-08 12:39:23 655

原创 基于AUTOSAR的NM唤醒机制:系统集成全面讲解

深入解析在AUTOSAR中NM报文唤醒内容的实现原理与系统集成要点,剖析网络管理节点如何通过特定唤醒帧实现低功耗通信,帮助开发者掌握在autosar中nm报文唤醒内容的实际应用与调试技巧。

2026-01-08 11:27:29 255

原创 MGeo在城市旧衣物捐赠箱布设优化中的应用

MGeo 是阿里巴巴通义实验室推出的面向中文地址领域的预训练模型,全称为。其目标是解决传统地址解析方法(如正则匹配、编辑距离)在面对口语化、缩写、错别字、顺序颠倒等情况时准确率低的问题。MGeo 不只是一个地址匹配工具,更是城市精细化治理的“数据底座构建者”。数据融合 → 空间洞察 → 决策支持 → 公众受益通过 MGeo 实现的地址实体对齐,不仅提升了数据质量,更让政策制定者能够真正“看见”城市的微观脉动——哪里有需求,哪里被忽视,哪里可以更高效。地址标准化是智慧城市建设的第一公里,不可跳过;

2026-01-08 07:16:21 651

原创 MGeo地址匹配结果的后处理优化方法

MGeo 是阿里巴巴推出的一款专用于中文地址相似度计算的深度学习模型,其核心目标是在海量地址对中准确判断两个地址是否指向同一地理位置(即“实体对齐”)。同义替换:如“北京市” vs “京市”缩写与全称:如“朝阳区建国门外大街1号” vs “朝阳建外大街1号”层级省略:如“浙江省杭州市” vs “杭州”口语化表达:如“国贸附近” vs “建国门外大街甲1号”技术亮点。

2026-01-08 05:11:42 529

CKAD认证考试学习指南

本书《Certified Kubernetes Application Developer (CKAD) Study Guide》由Benjamin Muschko撰写,旨在帮助开发者通过CKAD考试。书中详细介绍了Kubernetes的核心概念、kubectl命令行工具的使用,以及如何在考试中应用这些知识。本书内容紧跟CKAD课程大纲,不仅包含理论知识,还提供了实际操作练习,帮助考生加深理解并准备应对考试中的实际操作题。读者需具备一定的Kubernetes基础知识,对于完全新手,建议先阅读相关入门书籍。书中强调了实际操作的重要性,并鼓励读者参考官方文档和社区资源以获得更深入的理解。

2025-04-30

软件维护与进化国际会议论文集

本文介绍了如何从程序执行日志或轨迹中推断出计算状态机模型的技术。文章指出,传统的状态机推断方法无法完整模拟程序执行过程中的数据变化,因此提出了一种基于遗传编程的方法,旨在推断数据转换函数,从而使得推断出的状态机具有完全的计算能力。文章通过逆向工程现有实现的轨迹,展示了如何从Java类中推断出模型,并验证了其准确性。此外,还讨论了与EFSM相关的概念,并提供了一个概念验证案例研究,说明了如何使用这些技术进行推断驱动测试。

2025-03-19

汇编语言基础与Pentium指令集

本书主要介绍了Pentium汇编语言的基础知识,包括数据分配语句、数据传输指令以及Pentium指令集的概述。书中详细讨论了汇编语言语句的格式和类型,以及如何使用汇编器指令为变量保留存储空间。此外,还涵盖了处理器指令的操作码、寻址模式、数据传输指令如mov、xchg和xlat等,以及定义常量和宏的方法。书中通过实例展示了翻译指令xlat的性能优势,并对汇编语言程序的结构和编写风格进行了指导。

2025-03-19

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除