你可以使用动态规划来解决这个问题。
首先,我们可以定义一个数组 dp[i],其中 dp[i] 表示将 i 个玻璃球拆分成若干份后,每份玻璃球数量的乘积的最大值。
然后,我们可以通过以下方式来计算 dp[i] 的值:
对于每个 i (4 ≤ i ≤ N),
dp[i] = max(dp[j] * (i - j)) (其中 j 为小于 i 的非负整数)
这意味着,我们可以枚举所有小于 i 的非负整数 j,然后将 i 个玻璃球分成 j 个玻璃球和 (i - j) 个玻璃球两份,然后取最大值。
最后,我们可以输出 dp[N] 的值,即为最大乘积。
下面是用 Python 代码实现的示例: