运用递归解决汉诺塔问题(Python 3.0)
一、汉诺塔问题由来
汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
二、问题分析
-
问题:
现有n个圆盘在柱子X上,需将它们全部移动到柱子Z上。移动过程中可借助柱子Y。 注:每次只可移动一个盘子。 -
解决:
1.若只有一个圆盘: 将圆盘从柱子X移动到柱子Z上。
2.若有两个及以上圆盘: 将(n-1)个圆盘从柱子X移动到柱子Y上 将第n个圆盘从柱子X移动到柱子Z上 将(n-1)个圆盘从柱子Y移动到柱子Z上
三、Python代码
具体代码如下:
def hanoi(n,x,y,z):
if n==1:
print(x,"-->",z)
else:
hanoi(n-1,x,z,y) #将前(n-1)个盘子从x移动到y上
print(x,"-->",z) #将最后一个盘子从x移动到z上
hanoi(n-1,y,x,z) #将y上的(n-1)个盘子移动到z上
n=int(input('请输入汉诺塔层数:'))
hanoi(n,'X','Y','Z') #这里x,y,z分别用字符X,Y,Z表示
四、运行结果
#n=3时
请输入汉诺塔层数:3
X --> Z
X --> Y
Z --> Y
X --> Z
Y --> X
Y --> Z
X --> Z
#n=4时
请输入汉诺塔层数:4
X --> Y
X --> Z
Y --> Z
X --> Y
Z --> X
Z --> Y
X --> Y
X --> Z
Y --> Z
Y --> X
Z --> X
Y --> Z
X --> Y
X --> Z
Y --> Z