自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(194)
  • 收藏
  • 关注

原创 Argocd 运维与最佳实践

Git 仓库是圣经配置仓库与源码仓库分离: 坚持使用独立的 Git 仓库来存放 Kubernetes 配置。逻辑化的目录结构: 合理地组织你的目录,例如按应用、按环境。拥抱 Kustomize/Helm: 避免复制粘贴 YAML,用它们来管理配置差异。一切皆在 Git 中: 任何对生产的变更,无论多紧急,都应通过向 Git 提交并由 Argo CD 同步来完成。杜绝手动的kubectl操作。安全是第一要务严禁明文密钥: 绝不将明文Secret存入 Git。

2025-06-11 07:05:53 358

原创 GitOps 中的密钥管理 - 安全处理敏感信息

今天,我们成功地解决了 GitOps 流程中最棘手的密钥管理悖论。我们认识到,没有“银弹”,但有多种成熟且安全的模式可供选择。我们动手实践了,并深入理解了和这两种更高级的模式。为你的项目选择合适的密钥管理策略,是实施严肃的、生产级 GitOps 的一个至关重要的架构决策。至此,我们的 GitOps 系统已经功能完备、配置优雅、部署安全、密钥无忧。那么,作为一个 SRE,我们还需要关心什么呢?当然是系统本身的日常运维、监控、备份恢复和最佳实践。

2025-06-11 06:59:56 721

原创 渐进式交付 - 使用 Argo Rollouts 实现金丝雀与蓝/绿发布

Argo Rollouts 同样完美支持蓝/绿部署。只需将strategy修改为blueGreenstrategy:blueGreen:# 指向当前线上 (blue) 版本的 Service# 指向新 (green) 版本的 Service,用于发布前的预览和测试# 部署完 Green 版本后是否自动切换流量,设为 false 则会暂停等待人工 promotepromote操作会通过修改的selector来实现流量的瞬间切换。今天,我们从标准的滚动更新迈出了一大步,进入了渐进式交付的领域。

2025-06-09 14:21:37 657

原创 管理复杂应用 - Helm、Kustomize 与应用集模式

今天我们完成了从简单到复杂的关键一跃。我们学会了如何使用Helm来管理可配置的第三方应用,如何使用Kustomize来优雅地处理多环境配置,并最终通过应用集 (App of Apps) 模式,实现了用 GitOps 来管理整个应用组合的声明式方法。至此,我们已经拥有了一个可扩展、可维护的 GitOps 配置管理体系。我们的“期望状态”定义得既清晰又高效。接下来,我们将回到交付流程本身。我们已经能可靠地部署应用了,但如何能让部署过程对用户的影响最小、风险最低呢?在下一篇中,我们将深入探讨渐进式交付。

2025-06-09 09:41:06 1133

原创 Argo CD 入门 - 安装与第一个应用的声明式同步

恭喜你!今天我们成功地完成了从理论到实践的跨越。我们安装了 Argo CD,学习了它的基本操作,并遵循 GitOps 的最佳实践,通过在 Git 中声明期望状态,成功地将一个应用部署到了 Kubernetes 集群。更重要的是,我们亲眼见证了 Argo CD 强大的状态协调和自我修复能力。我们已经掌握了最核心的 GitOps 工作循环。但是,真实世界的应用远比一个简单的 Nginx 部署要复杂。我们如何管理包含多个微服务的复杂应用?如何处理不同环境(开发、测试、生产)的配置差异?

2025-06-08 18:01:31 1065

原创 GitOps 核心思想 - 当 Git 成为唯一信源

简而言之,你希望你的系统(例如,Kubernetes 集群)是什么样子,就在 Git 仓库里用声明式的文件(例如,Kubernetes YAML)把它描述出来。在本篇中,我们已经深入理解了 GitOps 的核心思想和它为 SRE 带来的价值。我们知道了它如何通过声明式、版本化的方式,利用 Git 和自动化代理来提升部署的可靠性、安全性和可追溯性。,并完成第一个应用的声明式同步,亲眼见证 GitOps 的 Pull 模型是如何工作的。为了解决这些问题,一种以 Git 为中心的、更为严格和声明式的实践范式——

2025-06-08 17:56:22 819

原创 MySQL 性能调优入门 - 慢查询分析与索引优化基础

MySQL性能调优核心在于慢查询分析与索引优化。首先应基于监控数据诊断问题,明确问题范围和类型。慢查询是常见性能瓶颈,需启用慢查询日志并合理设置阈值,使用pt-query-digest等工具分析。EXPLAIN命令至关重要,能显示查询执行计划,重点关注type列(避免ALL全表扫描)和Extra列(警惕临时表和文件排序)。索引优化的基本原则是为WHERE、JOIN、ORDER BY等条件创建合适索引,但需权衡读写性能。性能调优应遵循"监控-分析-优化-验证"的闭环流程。

2025-06-06 11:14:14 1301

原创 MySQL 性能晴雨表 - 关键指标监控与基线建立

MySQL性能监控与基线摘要 数据库性能监控对SRE至关重要,主要涉及:保障用户体验、优化资源成本、问题诊断、容量规划、变更评估和SLO管理。关键监控领域包括: 吞吐量与连接:QPS、TPS、连接数(Threads_connected/running)反映负载和健康状态; 查询性能:慢查询(Slow_queries)、全表扫描(Select_scan)、临时表(Created_tmp_*)揭示查询效率; InnoDB指标:缓冲池命中率(>99%)、日志活动、行操作和锁等待反映存储引擎状态; 系统资源:

2025-06-05 09:57:10 721

原创 MySQL 高可用基石 - 复制监控与常见 HA 方案

MySQL高可用架构核心在于复制机制,包括主从复制原理、二进制日志格式选择及GTID应用。监控复制状态需重点关注I/O/SQL线程运行状态、延迟指标及错误信息。常见HA方案包括手动切换、MHA、Orchestrator、InnoDB Cluster和PXC等,各有适用场景和优缺点,选择时需平衡数据一致性、性能和运维复杂度。

2025-06-05 09:45:35 565

原创 数据生命线 - MySQL 备份与恢复策略详解

MySQL备份与恢复策略摘要 本文详细介绍了MySQL数据库备份与恢复的完整策略。首先明确了两个关键业务指标:RPO(恢复点目标)决定备份频率,RTO(恢复时间目标)影响恢复方案选择。MySQL备份分为逻辑备份(mysqldump/mysqlpump/mydumper)和物理备份(XtraBackup/快照),各有优缺点,通常需要组合使用。文章还讲解了利用二进制日志(binlog)实现精确到时间点的恢复(PITR)技术,包括如何配置和操作流程。备份恢复策略应根据业务需求、数据库规模和技术能力综合设计,确保数

2025-06-03 09:15:59 992

原创 SRE 眼中的数据库 - 不仅仅是 CRUD

SRE 在看待数据库时,会将其视为一个需要满足明确 SLO 的关键服务。除了关注传统的数据库管理任务外,SRE 更强调其可用性、性能、可恢复性、可扩展性以及运维的自动化程度。对于像 MySQL 这样的数据库,虽然其本身提供了丰富的功能和机制,但要构建一个真正可靠的数据库服务,离不开 SRE 的工程化方法和持续改进。数据库可靠性工程是一个非常深入的领域。在接下来的篇章中,我们将更具体地探讨 MySQL 的备份与恢复策略,这是保障数据安全的生命线。敬请期待!

2025-06-03 09:09:12 716

原创 Ansible 进阶 - Roles 与 Inventory 的高效组织

Ansible进阶:Roles与Inventory高效管理摘要 Ansible Roles是预定义的标准化目录结构,用于组织特定功能的自动化内容,包含tasks、handlers、variables等组件,实现模块化和代码复用。通过ansible-galaxy工具可快速创建Role骨架,在Playbook中通过roles关键字调用。Inventory管理方面,静态Inventory适合固定环境,而动态Inventory通过脚本或插件从云平台等数据源实时获取主机信息,适用于动态基础设施。变量优先级遵循从具体到

2025-06-01 16:43:44 905

原创 Ansible 剧本精粹 - 编写你的第一个 Playbook

Ansible Playbook 精要指南 本文介绍了 Ansible Playbook 的基本结构与编写方法,帮助读者实现"配置即代码"。主要内容包括: Playbook 使用 YAML 格式编写,通过缩进表示层级关系 核心组件: Play:逻辑执行单元,包含主机组、提升权限和任务列表 Task:最小执行单元,调用模块完成具体操作 关键特性: 变量机制避免硬编码,支持多种定义方式 Handlers用于在配置改变后执行特定操作(如重启服务) 模块化设计,覆盖系统管理的各个方面 示例展示了

2025-06-01 16:39:24 1367

原创 告别重复 - Ansible 配置管理入门与核心价值

Ansible配置管理入门摘要(149字): Ansible是一款无代理架构的开源自动化工具,通过YAML剧本实现配置管理、应用部署等任务。其核心价值在于自动化、一致性、幂等性和可扩展性,帮助SRE团队减少重复劳动并确保系统可靠性。Ansible采用控制节点管理目标主机,通过SSH协议连接,无需在被管节点安装代理。基础架构包括Inventory清单、模块、任务和Playbook。用户可先用Ad-Hoc命令执行简单任务(如ping测试连通性),逐步掌握"配置即代码"理念。该工具特别适合批量

2025-05-30 09:17:38 1157

原创 亡羊补牢与持续改进 - SRE 的安全日志、审计与事件响应

全面的安全日志记录和严格的审计是发现潜在威胁、调查安全事件的基石。而一个准备充分、演练成熟的安全事件响应计划,则是在危机发生时能够快速、有效地控制局面、减少损失、并从中学习的关键。SRE 在这个闭环中,凭借其深厚的系统知识、运维经验和自动化能力,扮演着不可替代的角色。安全不是一劳永逸的目标,而是一个持续演进、不断对抗的过程。SRE 通过将工程化的思维和实践应用于安全挑战,是这条战线上重要的守护力量。

2025-05-29 08:26:59 803

原创 防患未然 - SRE 的漏洞扫描与补丁管理之道

主动的漏洞扫描(覆盖操作系统、容器镜像、应用程序依赖等多个层面)和一套健全、自动化的补丁管理生命周期,是 SRE 减少系统攻击面、防患于未然的关键安全实践。这需要 SRE、安全团队和开发团队之间的紧密协作,将安全融入日常运维和开发流程中。这不仅仅是一次性的修复工作,而是一个持续的、动态的改进过程。在下一篇,也是我们 SRE 安全基础系列的最后一篇,我们将探讨 SRE 如何进行日志审计与安全事件响应,即当安全事件(不可避免地)发生时,我们如何检测、响应、从中学习并改进。敬请期待!

2025-05-28 10:13:02 1051

原创 守护命脉 - SRE 的密钥与凭证管理实践

SRE密钥管理实践摘要 在基础设施安全中,密钥管理是守护"城堡"的关键。Kubernetes提供了基础的Secret对象,但存在静态加密、访问审计和密钥轮换等局限性。为增强安全性,建议集成外部密钥管理器(如HashiCorp Vault或云厂商KMS),通过Secrets Store CSI Driver等方式实现更安全的密钥分发。SRE需关注密钥全生命周期管理,包括加密存储、细粒度访问控制、定期轮换和使用审计等环节,避免密钥泄露导致数据泄露或服务中断。

2025-05-27 08:33:13 850

原创 夯实地基 - SRE 必须掌握的基础设施安全原则

摘要: SRE需掌握的基础设施安全核心原则是最小权限原则(PoLP),确保每个实体仅获必要权限以降低风险。身份与访问管理(IAM)通过认证和授权实现访问控制,Kubernetes RBAC是其典型应用。网络安全需关注防火墙、安全组、Kubernetes NetworkPolicy及堡垒机等隔离措施。这些措施共同构建基础设施安全防线,下篇将探讨密钥与凭证管理。

2025-05-26 08:18:10 750

原创 SRE 与安全 - 可靠性与安全性的共舞

SRE与安全团队共同致力于系统稳定性,安全是可靠性的核心要素。DevSecOps理念强调安全应融入IT全生命周期,SRE通过自动化安全实践和共享责任模型,构建更具韧性的系统。云环境下,SRE需明确安全责任边界,管理应用层安全配置,推动漏洞管理和安全监控。未来将深入探讨基础设施安全基础,包括权限管理和网络安全措施。

2025-05-25 07:30:19 867

原创 容器与编排入门 - SRE 须知的 Docker 与 Kubernetes 基础

摘要: 容器化技术(如Docker)通过轻量级虚拟化打包应用及其依赖,解决了环境一致性问题,相比虚拟机更高效。Kubernetes(K8s)作为主流容器编排工具,解决了大规模容器管理的挑战,包括调度、扩缩容、服务发现等。K8s核心架构包括控制平面和工作节点,关键对象有Pod、Service、Deployment等。SRE需掌握容器和K8s基础,以维护现代分布式系统的可靠性,涉及监控、故障排查、GitOps等工作。容器与K8s已成为现代应用运行和SRE工作的基石。

2025-05-25 07:25:26 935

原创 机器内部 - SRE 必备 Linux/操作系统基础

无论是排查性能瓶颈、分析资源消耗,还是确保系统的稳定性,对底层的操作系统有基本的了解都是必不可少的。虽然云计算和容器化在一定程度上抽象了底层细节,但当问题发生或者需要进行深度优化时,OS 基础知识将是你手中的利器。虽然现代基础设施和平台提供了越来越多的抽象,但作为 SRE,对底层操作系统(尤其是 Linux)的基本原理和常用工具的理解仍然是不可或缺的。了解了单机的操作系统基础后,现代应用更多地是以容器化的方式运行在像 Kubernetes 这样的编排平台上。我们会在后续可能的进阶系列中探讨。

2025-05-24 17:39:29 615

原创 稳固基石 - Prometheus 与 Alertmanager 运维考量

在生产环境中可靠地运行 Prometheus 和 Alertmanager,需要我们考虑资源规划、高可用部署、数据的长期存储(对 Prometheus 而言),以及 Alertmanager 的集群化和精细配置。一个维护良好、稳定可靠的监控告警系统是 SRE 团队的“千里眼”和“顺风耳”,是保障业务稳定运行的基石。

2025-05-24 17:32:35 766

原创 数据可视化利器 - Grafana 与 Prometheus 联手打造监控仪表盘

Grafana 是什么?一个让你能够轻松创建、探索和分享仪表盘的强大工具,支持丰富的图表类型和灵活的定制能力。核心概念数据源 (Data Sources):Grafana 可以连接到多种不同的数据存储后端。Prometheus 是其最重要和最常用的数据源之一,此外还支持 InfluxDB, Elasticsearch, MySQL, PostgreSQL, AWS CloudWatch, Azure Monitor 等。仪表盘 (Dashboards):Grafana 的核心展现单元。

2025-05-23 09:42:07 1133

原创 理解“管道” - SRE 必备网络基础知识

对于 SRE 来说,网络不再是“别人的事”。它是我们所维护的分布式系统的生命线。理解这些基础概念,能够熟练使用基本的诊断工具,将极大地提升你定位和解决线上问题的能力,并帮助你设计出更健壮、更高可用的系统架构。当用户访问变慢、服务间调用失败、或者应用无法连接数据库时,很多时候问题就出在网络这个“管道”上。因此,掌握必要的网络基础知识,对于 SRE 诊断问题、设计可靠系统来说,是不可或缺的基本功。的:服务分布在不同的机器、不同的机架、甚至不同的数据中心或云区域。作为 SRE,我们打交道的系统几乎都是。

2025-05-23 09:28:58 561

原创 指标采集先锋 - Prometheus 关键 Exporter 实战详解

Exporter 是 Prometheus 生态系统中不可或缺的一环,它们像辛勤的工蜂一样,从各种异构的系统和服务中采集数据,并将其转化为 Prometheus 能够理解的统一格式,为我们后续的查询、可视化和告警奠定了数据基础。我们今天详细了解了最为基础的 Node Exporter,用于端点探测的 Blackbox Exporter,以及特定应用 Exporter 的代表,并强调了应用原生暴露指标的重要性。现在,我们有了数据源 (Exporter),也学会了如何查询数据 (PromQL)。

2025-05-22 09:56:01 886

原创 构建可重复的系统 - SRE 的 IaC 与 CI/CD 基础

基础设施即代码 (IaC) 和持续集成/持续部署 (CI/CD) 是现代运维和 SRE 的核心实践。它们将软件工程的最佳实践(代码化、版本控制、自动化、测试)应用于基础设施管理和软件交付流程,旨在提高效率一致性可靠性,并从根本上减少琐事。作为一名初级 SRE,理解并掌握这些概念,并学会在实践中应用相关的工具,是你成长道路上必不可少的一步。它们是构建和维护那些既能快速迭代又能稳定运行的大型系统的基石。现在我们的系统可以通过代码来构建和部署了。但是,这些系统运行在网络之上,服务之间也通过网络通信。

2025-05-22 09:43:27 932

原创 PromQL 魔法 - Prometheus 查询语言基础与实战

PromQL 是一门表达能力极强的查询语言,是驾驭 Prometheus 海量时间序列数据的利器。今天我们学习了它的基本数据类型、选择器、核心的速率计算和聚合函数,以及如何利用计算百分位延迟,并初步了解了告警规则的构成。掌握 PromQL 的最好方法就是不断练习。建议你打开 Prometheus 自带的表达式浏览器,或者在 Grafana 中,尝试对你已有的指标进行各种查询和探索。我们现在知道了如何查询数据,但这些数据从何而来呢?它们是由各种Exporter采集并暴露给 Prometheus 的。

2025-05-21 09:20:07 595

原创 当系统“告急” - SRE 的事件响应与事后复盘

有效的事件响应能力可以帮助 SRE 团队在系统“着火”时,以最快速度将“火”扑灭,最大限度地减少损失。而坚持进行“无指责的事后复盘”,则是从每一次“火灾”中吸取教训,不断加固“防火”设施,最终目标是让“火灾”本身越来越少发生,即使发生也能被快速控制。简单来说,一个“事件”就是任何导致服务质量下降、功能中断,从而影响到用户,或者违反了我们既定 SLO(服务等级目标)的。它可能是一次彻底的服务宕机,也可能是关键功能响应延迟急剧增加,或者是错误率飙升导致大量用户操作失败。,恢复服务,并从中学习以防止未来重演。

2025-05-21 09:11:33 803

原创 监控基石 - Prometheus 核心概念入门

Prometheus 是一个强大且在云原生领域占据核心地位的开源监控告警系统。它基于Pull 模型采集数据,拥有灵活的标签化数据模型,支持多种指标类型,并具备强大的服务发现能力。理解这些核心概念是掌握 Prometheus 的第一步。我们现在知道了 Prometheus 是如何组织和收集数据的。那么,如何从这些海量的时间序列数据中提取有用的信息呢?如何进行查询、聚合、计算速率和百分位?下一篇,我们将深入学习 Prometheus 的查询语言——PromQL的基础知识与常用查询技巧。敬请期待!

2025-05-20 09:23:09 725

原创 保持警惕 - SRE 的监控与告警基础

监控为我们提供了观察系统内部运作的“眼睛”,让我们能量化可靠性、诊断问题、做出数据驱动的决策。而有效的告警机制则是将这些观察转化为及时、可操作响应的关键,帮助我们在问题失控前介入处理。理解监控什么、如何监控以及如何设置有意义的告警,是每一位 SRE 的基本功。那么,当告警真的响起,系统确实发生故障时,SRE 该如何有效地进行响应和处理呢?没有监控,我们就如同在黑暗中驾驶,对系统的真实状况一无所知,更谈不上保障其可靠性了。通常,我们会结合使用这些方法,确保从服务到基础设施都有全面的监控覆盖。

2025-05-20 09:14:02 1022

原创 你想成为 SRE 吗?理解 SRE 角色与核心原则

你可能听过像“SLO”、“错误预算”、“Toil”这样的术语,并且想知道它们是如何组合在一起运作的。这个博客系列正是为你——有志于成为或刚刚起步的初级 SRE 工程师——量身定制的,旨在帮助你扎实地理解将要日常接触的基础概念。它涉及到用量化的方式定义可靠性 (SLI/SLO),用智能化的方式管理风险 (错误预算),并持续地努力通过自动化来消除手动、重复的工作 (减少 Toil)。你的服务的错误预算就像是它每个月根据其承诺的“出勤率”(SLO)所允许的“SRE 是工程师,而不是整天手动点点点的操作员。

2025-05-19 09:56:32 1225

原创 Serverless 的未来与进阶:持续学习之路

Serverless 不仅仅是一种技术,更是一种思维方式的转变——它让我们将更多精力聚焦于创造业务价值,而非繁琐的底层设施。它赋予了开发者前所未有的能力,去快速构建、迭代和扩展应用。这个系列为你打开了 Serverless 的大门,希望它能点燃你对这项技术的热情。Serverless 的世界广阔而精彩,挑战与机遇并存。保持好奇心,持续学习,勇于实践,你一定能在 Serverless 的浪潮中乘风破浪!

2025-05-19 09:46:21 495

原创 架构设计模式:构建健壮、可扩展的 Serverless 应用

到目前为止,我们已经掌握了 Serverless 的基本概念,了解了 FaaS 和 BaaS 如何协同工作,学会了使用框架进行开发部署,并知道了如何监控和排查问题。现在,是时候从“能用”向“好用”迈进了。仅仅将代码部署到 Lambda 函数中并不意味着你构建了一个好的 Serverless 应用。随着应用逻辑变得复杂,函数数量增多,服务间交互频繁,如果没有良好的架构设计,你可能会陷入“函数泥潭”——难以维护、测试和扩展。

2025-05-18 12:37:59 837

原创 Serverless 应用的运维:监控、日志与问题排查

经过前面的学习和实践,代码跑起来了,API 也能访问了,是不是感觉可以高枕无忧了?等等!一个常见的误解是 Serverless 等于 “NoOps” (无运维)。实际上,这并非完全正确。虽然你摆脱了繁琐的服务器管理(打补丁、扩容、监控 CPU/内存使用率等),但应用的健康运行、性能优化、问题排查等。我们通常称之为 “LessOps” (更少运维) 或者 “DifferentOps” (不同的运维)。在 Serverless 世界里,运维的重心从转向了。

2025-05-17 09:58:41 1038

原创 与网格共舞 - 服务网格的运维与问题排查 (Istio 实例)

我们一起走过了服务网格从理想到实践的完整旅程。我们理解了它的价值主张(解耦、统一管理),剖析了其核心架构(控制平面与数据平面),掌握了其关键能力(流量管理、可观测性、安全),并探讨了运维实践中的挑战与应对。服务网格无疑是云原生时代解决微服务治理难题的一项强大技术。它将复杂性下沉,让开发者更专注于业务创新。然而,它也是一个复杂的分布式系统,引入它需要团队在技术、运维和文化上做好准备。

2025-05-16 09:25:30 951

原创 铜墙铁壁 - 服务网格的安全之道 (Istio 实例)

仅仅确认了通信双方的身份还不够,我们还需要控制允许哪些操作。比如,“订单服务”可以调用“用户服务”的查询接口,但不允许调用删除接口。Istio 使用基于身份和属性来源 (Source):谁发起的请求?(基于 mTLS 认证的服务身份/Service Account、请求来源的命名空间、来源 IP 地址、经过验证的 JWT 终端用户身份等)操作 (Operation):试图执行什么操作?(HTTP 方法如 GET/POST、请求路径如、目标端口号等)条件 (Condition)

2025-05-15 09:29:30 1176

原创 洞若观火 - 服务网格的可观测性魔法 (Istio 实例)

服务网格通过其 Sidecar 代理的天然优势,为我们带来了开箱即用、覆盖全面、格式统一的可观测性能力。自动化的指标、分布式追踪上下文传播和访问日志极大地降低了获取微服务系统洞察力的门槛,使开发者和运维人员能够更容易地理解系统行为、诊断故障和优化性能。现在,我们的服务不仅流量可控,而且状态可见。那么,下一步就是要确保这些通信是安全的。在下一篇博客中,我们将探讨服务网格在安全方面的核心功能,特别是如何利用它来实现服务间的自动 mTLS 加密认证以及细粒度的访问授权策略。敬请期待!

2025-05-14 09:24:07 592

原创 掌控随心 - 服务网格的流量管理艺术 (Istio 实例)

服务网格(如 Istio)通过统一的、声明式 API 简化了复杂的流量管理任务。它通过三大核心资源实现流量控制:Gateway 作为入口管理,定义了流量进入服务网格的端口和协议;VirtualService 作为路由规则,负责流量的具体分发,支持灰度发布、基于内容的路由、故障注入等功能;DestinationRule 定义了流量的目标子集和策略。这些资源共同协作,使得开发者能够灵活、高效地管理服务间的流量,无需在代码或负载均衡器中分散配置,从而提升系统的可观测性和可维护性。

2025-05-13 07:21:57 1018

原创 服务网格的“解剖学” - 控制平面与数据平面

服务网格通过将功能划分为控制平面(大脑,负责管理配置)和数据平面(肢体,负责执行策略),实现了对服务间通信的强大而灵活的管理。数据平面通过轻量级的Sidecar 代理拦截并处理实际流量,而控制平面则负责集中管理和下发配置。这种架构解耦了应用逻辑和网络通信逻辑,是服务网格实现其价值的关键。理解了服务网格的基本架构,我们就可以开始探索它所提供的具体功能了。在下一篇博客中,我们将首先聚焦于服务网格最核心的能力之一——流量管理 (Traffic Management),看看如何使用 Istio 的。

2025-05-12 08:44:37 1142

原创 实战演练:用 AWS Lambda 和 API Gateway 构建你的第一个 Serverless API

理论千遍,不如动手一遍!在前面几篇文章中,我们了解了 Serverless 的概念、FaaS 的核心原理以及 BaaS 的重要作用。现在,是时候把这些知识运用起来,亲手构建一个简单但完整的 Serverless 应用了。本次实战,我们将使用创建一个简单的 HTTP GET API 端点,当用户访问这个端点时,它会返回一个 JSON 消息:“Hello from Lambda!听起来很简单?没错!但这将让你体验到 Serverless 开发的核心流程。

2025-05-11 12:47:16 913

提升问答效率的Deepseek优化提问指南与技巧

内容概要:本文档详细介绍了如何通过优化提问来获得更准确和有用的回答。主要内容分为五个方面:明确问题类型并提供具体细节、将复杂问题分解为多步骤提问、提供充分的背景信息、指定所需的回答形式以及在遇到不理想的回答时及时补充信息。此外,还强调了避免模糊表述、同时提出多个问题和缺少关键信息的问题。文档不仅提供了正面的例子,还展示了不恰当的提问方式及其改进方法。 适用人群:希望提高沟通效率、获取高质量答案的人群,特别是经常使用Deepseek或其他类似平台进行咨询的用户。 使用场景及目标:帮助用户构建有效的提问习惯,从而更快捷地解决问题,提高信息检索的质量和速度。无论是学术研究、技术难题还是日常生活中的疑惑,都能从中受益。 其他说明:文档结尾提及了一个名为“DeepSeek智库”的社区,鼓励有兴趣深入了解Deepseek的用户加入,享受更多资源和服务。

2025-04-01

2025最热AI大模型DeepSeek-R1网页端与API操作指南及资源推荐

内容概要:本文档主要介绍DeepSeek-R1的大规模预训练模型在实际应用中的部署方式,着重讲述网页端的操作流程和使用方法,还详细解释了如何通过API接口进行开发以及调用的具体步骤。为用户提供从入门到实践的学习路线图和相关资源链接,确保使用者能快速掌握DeepSeek的基本概念并开始尝试各种功能操作,包括加入专为DeepSeek设立的知识共享社区‘DeepSeek智库’以获取更多进阶教程和技术支持。 适用人群:对AI技术和大型语言模型感兴趣的个人、希望利用DeepSeek-R1提升工作效率的专业人士或是正在寻找新技术解决方案的企业团队。 使用场景及目标:用户可以利用本指南作为初步参考资料,在工作中运用DeepSeek-R1提供的强大工具解决复杂的任务,如自动化文本生成功能来减轻文案撰写负担,提高内容创作效率。此外,对于开发者而言,这份指南还将帮助他们理解和集成DeepSeek的API服务,构建基于AI的应用程序。 其他说明:文中提到有关于DeepSeek的知识星球会员活动——加入即可享受定期推送的行业资讯更新,参与交流互动的机会,并且能够获得一定的费用折扣。这无疑将为广大AI爱好者提供

2025-03-03

DeepSeek30个喂饭指令.pdf

DeepSeek30个喂饭指令.pdf

2025-03-10

Deepseek 2025年高效应用秘籍:职场、学业和创作中的智能助手

内容概要:本文介绍了 Deepseek 大型 AI 模型的高效使用方法,聚焦于一个关键点——提问技巧的提升。文中提供了“4步提问法”,帮助用户从明确身份、设定具体任务、加入细节约束到最后确认输出格式四个方面精准优化与 Deepseek 的交互,从而大幅提升效率并获得满意的结果。具体案例展示了在不同场景下,如职场汇报、学术论文优化以及博客写作中的正确提问方式,以及如何改进以往无效的提问来得到更精确有用的回答。 适用人群:对深度学习有兴趣,希望掌握更高效使用工具技巧的学生党、职场人士和其他用户群体。 使用场景及目标:该指南适用于各种日常工作生活情景,在需要快速获取大量信息并且追求高质量输出的情况下尤为有用;同时也非常适合那些希望通过更好的沟通技巧来提升工作效率的人士。 其他说明:本文鼓励读者积极参与到实践中去检验自己的提问水平,并提供加入专门交流社区的机会以进一步探讨相关话题和获取更多实践经验。此外,限时优惠活动使用户能够更低廉的价格体验完整的 Deepseek 功能集。

2025-03-12

深度解读DeepSeek最强使用攻略:简明提问与三大对话模板

内容概要:本文详细介绍了近期热门的AI工具DeepSeek的正确使用方法,特别是其与其他AI产品的显著区别——即简单、直白地提问能够获得更好的推理效果,而非复杂的引导提示。文章推荐了三种特别有效的沟通模式:首先是以‘目标—对象—效果—问题’为基础的场景设定模板,有助于精确传达需求背景;其次是面向小白用户的术语解释法,强调采用平易近人的语言诠释专业知识点;最后是创意十足的风格迁移模式,通过特定作者的作品风格重铸指定主题的文字内容。 适合人群:所有对于AI对话应用感兴趣的新手用户以及希望改进现有交流手段获取更多有效资讯的技术发烧友们。 使用场景及目标:①提高普通民众与AI之间的互动效率;②帮助非专业背景的人士快速理解高科技术语;③鼓励创新思维,在各种文学创作或文案撰写中借助大师笔风激发灵感。 其他说明:考虑到DeepSeek作为一个强大而先进的语言模型可能会遇到的问题,文中还提供了常见的故障排查方案和支持社区链接供进一步咨询与探讨。此外,针对DeepSeek爱好者特设的知识星球项目也在推广阶段,提供了一个交流平台用于共享资源和技术心得。

2025-03-10

DeepSeek小白使用技巧指南:让你轻松驾驭深度思考R1与人性化交互

内容概要:本文主要介绍了 DeepSeek 这一 AI 工具的小白使用技巧。从基础操作到高级玩法进行了全面梳理。特别强调了使用 ‘按下 R1’ 来触发深度思考,从而获得与其他模型不同的结论。文章详细讲解了如询问更精确的问题、指定专家角色提高回答质量、设定要求获取更可靠的答复、使用‘隐藏功能’进行数据处理、语言翻译以及搜索特定网站的方法、并提出了如何简化答案和解决编码错误的建议。另外文中也提供了一些关于充分利用 AI 提供更具体化、定制化内容的小窍门,使用户能更好地理解和运用该工具。 适合人群:初次接触 DeepSeek 或对这一工具有一定兴趣的技术新手或是开发者。 使用场景及目标:帮助用户更加高效准确地利用 DeepSeek 实现各种任务,包括但不限于编写程序、数据分析、自然语言处理等领域的工作流改进,以及获取相关信息资源。 其他说明:文章还提供了 DeepSeek 使用社区——'DeepSeek智库'的相关信息,用户可以通过加入来进一步深入交流学习。此外,对于有兴趣深入了解和应用DeepSeek的人来说可以考虑加入付费社群。

2025-03-10

DeepSeek高阶提示词全面解析:助力职场、创作、电商等领域小白秒变专家

内容概要:本文介绍了由深AI夜校团队整理的50个超实用的DeepSeek高阶提示词,旨在帮助初学者快速上手DeepSeek这一强大的AI工具。文章分为多个部分,涵盖了职场打工人必备篇(如高效的会议纪要整理、自动化周报生成等)、自媒体爆款创作篇(如吸引人的标题生成、短视频脚本制作)、电商搞钱实战篇(如亚马逊爆款文案写作)、学生党逆袭篇(如文献综述速成、试卷押题),程序员开挂篇(如代码注释、BUG解决)、副业赚钱秘籍篇(如小红书起号攻略)以及个人成长开挂篇(如知识体系建设、日程管理系统)。通过对各个具体应用场景的实际问题的提示和解答,让读者可以迅速地在各自领域的实践中应用,并达到提升效率、创新思维、解决问题的目的。 适用人群:适用于对AI工具有一定兴趣但在实际运用中有一定障碍的初级用户,特别是职场新人、新媒体创作者、电商平台从业者、在校大学生、程序员及其他希望利用DeepSeek进行各类文本创作、流程优化的群体。 使用场景及目标:帮助各行业的专业人士利用DeepSeek更好地完成日常工作和生活中的各项任务。例如,在职场中提高会议记录的质量和速度;在自媒体平台发布有吸引力的内容;在电商平台上

2025-03-10

清华大学DeepSeek助力普通人的高效工作、学习与生活应用指南

内容概要:本文详细介绍了DeepSeek这款强大的AI助手如何帮助普通人解决日常工作、学习和生活中遇到的各种问题。首先解释了DeepSeek的核心功能和服务,接着探讨了如何有效地使用提示语来优化DeepSeek的产出,并展示了几个具体的应用场景:包括紧急项目撰写的快速生成,新员工熟悉公司和行业的高效入门途径,日常客户服务中问题的快捷处理,职业发展和个人成长过程中的人脉维护策略,以及突发状况下的快速反应和协调。同时,文中提到通过DeepSeek,普通人可以充分利用提示词驱动的新生产力,在AI时代增强竞争力。此外,还涉及了智能体在长时间对话中的知识生成与边界问题,帮助人们理解如何突破智能体的知识循环边界并进行创新。 适合人群:普通大众,特别是在工作、学习或生活中希望通过技术手段提高效率和生活质量的人群,如职场人士、学生、新员工、家长和管理人员。 使用场景及目标:本文适用于希望快速掌握复杂工作任务的方法、快速熟悉陌生领域的人员、以及寻求解决个人挑战与困惑(如家庭紧急事件、人际交往)的群体。主要目标是让用户学会如何有效利用AI助手DeepSeek解决问题,同时提高自身在信息处理和决策方面的能力。 其他说明:对于想要深入了解人工智能技术及其应用的人来说,《清华大学DeepSeek第3弹》是一份宝贵的参考资料,不仅可以学习AI工具的实际操作,还能从中了解到提示语设计的重要性及其影响AI生成内容的方式。通过掌握正确的提问方式和技术,使用者不仅能解决当前面临的具体问题,还将获得一种可持续发展的技能,为未来更广泛的智能化应用场景做好准备。

2025-02-25

DeepSeek赋能职场应用的技术实现及其多场景应用探讨 - 清华大学新媒沈阳团队

内容概要:本文来自清华大学新媒沈阳团队的最新研究成果,旨在探讨大型预训练模型 DeepSeek 如何应用于职场的各种情境中,包括提示语技巧及实际应用场景。文档介绍了 DeepSeek 的三大版本及不同部署方式的特点,重点阐述了基础模型V3与推理模型R1的操作区别和应用场合。同时,展示了 DeepSeek 在各类AI竞赛以及实际工作中的优异表现,例如在图表生成、PPT创作、海报设计等方面的应用,充分体现了该技术的人机协同能力和广泛适应性。此外,还提供了如何高效使用 DeepSeek 进行情报收集、内容创作等一系列具体指导。 适合人群:本文适用于有一定编程和技术背景的知识工作者和职场人士,尤其适合从事数据处理、市场分析、媒体内容生产和AI应用开发的专业人士。 使用场景及目标:本文旨在指导职场专业人士如何利用AI技术提升工作效率和创新能力,如通过自动化报表生成减少手动操作的时间成本,通过智能化内容生产提高营销宣传的质量和影响力等。通过对不同应用场景的实际案例剖析,帮助使用者快速理解和实施。 其他说明:文档由清华大学和中央民族大学的顶尖科研团队撰写,集成了众多前沿研究成果和技术实践经验,为AI在各行各业的应用提供了宝贵的参考资料和发展蓝图。

2025-02-25

深入解析AWK内置变量:提升文件处理与数据清洗效率的技术指南

深入解析AWK内置变量:提升文件处理与数据清洗效率的技术指南

2025-02-12

解决Git克隆时遇到的HTTPS证书验证失败的问题

内容概要:本篇文章详细介绍了在利用Git进行仓库克隆过程中出现HTTPS证书验证失败这一普遍存在问题,并给出了详细的解决方案。针对不同的操作系统提供了两种解决方式:一种是为Linux与Windows分别设置系统级环境变量,使其跳过证书认证环节;另一种则是统一采用Git内置配置命令来禁止全局HTTP请求下的SSL安全检查机制。这样可以有效规避因网络或服务器端导致的信任凭证不匹配所引起的clone中断问题。 适用人群:面向对Git有一定基础使用的开发者和操作维护人员。 使用场景及目标:本文主要解决在实际工作中由于网络条件限制或特殊网络环境中(如公司内部网),尝试通过https协议访问公共源码库(GitHub等)执行clone指令却频繁遭遇证书校验失败的情况。 其他说明:值得注意的是,在关闭SSL验证之后,虽然可以快速解决问题并提高工作效率,但也意味着失去了来自HTTPS协议的安全保障,请各位在非官方渠道获取资源的时候谨慎考虑这种方法的影响。同时鼓励用户尽量查明造成证书认证失败的具体原因,从根本上寻找解决方案以恢复SSL保护。

2025-02-12

Linux下使用grep搜索日志文件遇到Binary file警告的解决方法

内容概要:本文介绍了在Linux环境下使用grep命令检索日志文件过程中可能会碰到的 'Binary file ... matches' 提醒的问题及其成因分析与解决方案。该问题是由于日志文件中含有特殊非打印字符,像是ASCII值位于128到255之间的扩展ASCII字符或者像null (0x00),start of heading(0x01)以及substitute(0x1A)这类不可见控制字符,这会导致某些编辑器显示乱码。为了应对这种情况提供了两种主要的解决方案:一种是在运行grep命令时候添加 -a 参数强制将所有输入视为纯文本;另一种则是先用 cat -A 显示所有不可见字符再进行grep匹配。 适合人群:熟悉Linux基本操作指令并且经常需要对服务器上的日志或其他数据记录进行查找和筛选工作的技术人员。 使用场景及目标:适用于需要快速有效地解析并定位特定日志条目的IT工作者,尤其是在面对包含不规范内容或意外二进制块的数据时的目标。 阅读建议:对于初学者来说,在掌握基础shell命令之后,可以进一步研究此篇文章所提出的处理技巧来提高效率。而对于更有经验的技术人员,则可以通过对比不同解决思路优化自己的日常工作流程。

2025-02-12

Kubernetes网络解决方案详解:Flannel的架构、配置与应用场景

内容概要:本文详细介绍了Flannel这一经典的Kubernetes网络插件。主要内容涵盖了Flannel的基本概念、工作原理、不同后端模式的特点与选择依据,及其具体配置方法。特别强调了Flannel作为Kubernetes网络方案的优势在于其简单、易用性和对各种环境下Pod通信的支持能力。 适合人群:对于想要深入了解Kubernetes网络机制、尤其是关注Pod间通信方案的技术爱好者,运维工程师,或有意向构建和管理自己的Kubernetes集群的专业人士而言极具价值。 使用场景及目标:通过本篇文章的学习,可以帮助读者理解如何利用Flannel建立稳定可靠的内部网络通信,在实际操作过程中正确选择合适的后端模式完成配置,并优化Kubernetes集群内的网络性能。 其他说明:Flannel适用于小型集群及对性能无特殊要求的情况;而在大型集群或者更高要求的安全性和隔离性的场合,则需考虑如Calico等更为复杂的选项。

2025-02-12

清华大学总结的deepseek使用指南

deepseek

2025-02-12

Kubernetes容器编排技术:kubectl debug命令详解与容器及节点故障排查

内容概要:本文详细介绍了 Kubernetes (简称 K8s) 中的 kubectl debug 命令,这是用于在运行中的 Pod 中添加临时容器以进行故障排查的强大工具。文章首先概述了 kubectl debug 的主要用途和优势,即通过添加临时容器并共享目标容器的各类命名空间,使得开发者能高效地进行内部环境的操作与检查。文中通过实例演示了如何为一个已有 Pod 添加临时容器进行调试、列举了一些典型的调试指令及其应用场景、解释了如何利用此命令针对单个节点创建专门的调试 Pod 来解决集群级别的问题。最后强调,在完成调试任务之后应该及时移除这些额外加入的组件以保证生产环境的稳定性。 适用人群:熟悉 Kubernetes 或有意向深入研究 K8s 集群管理与运维的技术人员,特别是遇到 Pod 或容器故障难以定位的情况时希望借助 kubectl debug 快速诊断的人群。 使用场景及目标:当遇到容器或 Pod 故障时,可以通过 kubectl debug 命令迅速在现有 Pod 中插入临时容器用作调试工具;或是针对节点层级的问题创建特定的调试 Pod,以便更全面地了解和修复可能存在的配置错误或性能瓶颈等问题。 其他说明:虽然 kubectl debug 是一个便捷的故障排查手段,但在实际应用过程中也要注意不要长时间占用计算资源以及避免对线上业务造成不必要的干扰。因此,应当谨慎使用并在解决问题后尽快释放相关资源。

2025-02-12

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除