求4点的高斯-勒让德积分的坐标和权重系数: ∫(-1,1)f(x)dx=w1f(x1)+w2f(x2)+w3f(x3)+w4f(x4) 并证明该积分公式的最高代数精度,需要有详细的推导和求解过程...

高斯-勒让德(Gauss-Legendre)积分公式是适用于定积分的一种数值积分方法。它通过选择固定的几个点,并为每个点分配一个权重系数,将积分的计算转化为在这几个点上求函数值的加权平均。

对于4点的高斯-勒让德积分公式,坐标和权重系数如下:

x1 = -0.8611363116 w1 = 0.3478548451

x2 = -0.3399810436 w2 = 0.6521451549

x3 = 0.3399810436 w3 = 0.6521451549

x4 = 0.8611363116 w4 = 0.3478548451

该公式的最高代数精度为2,即在积分的范围内,函数的二

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值