计算机视觉——算法与应用(Computer Vision:Algorithms and Applications)-阅读笔记(序)

本文探讨了计算机视觉领域的三个核心层面:科学层面的图像形成模型与逆过程数学方法,统计层面的概率模型及推断算法,以及工程层面的实际应用方法。介绍了三部曲策略,即在合成数据、加噪数据及真实世界数据上测试算法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

三个层面途径——获取灵感

  1. 科学层面:建立图像形成过程的详细模型,为了恢复感兴趣量而构建其逆过程的数学方法(必要时做简化假设处理)
  2. 统计层面:使用概率模型来量化产生输入图像的未知量先验似然率和噪声测量过程,然后推断所期望量的最可能的估计并分析其结果的不确定程度。使用的推断算法往往与用于逆转(科学的)图像形成过程的优化方法密切相关。
  3. 工程层面:开发出易于描述和实现且已知在实践中行之有效的方法。

“三部曲”策略——提出有效算法

  1. 在干净的合成数据上测试算法,因为已知其精确结果。
  2. 在该数据上增加噪声,评测性能是怎样作为噪声水平的函数退化的。
  3. 在真实世界数据上测试算法,优先取自广泛输入源的数据,如万维网上照片。

本书资料网址

《计算机视觉——算法与应用》资源网址.
包括数据集连接,软件库链接,幻灯片,参考文献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值