Dijkstra, Dijstra 堆优化, Bellman_ford, SPFA的总结

Dijkstra
处理无负权边的图

算法思路:
首先从图中找到离起点距离最小的点,然后将这个点标记,然后再用这个点去更新这个点连接的所有点。
时间复杂度:0(n * m)

测试题目:

  1. Dijkstra求最短路 I
    题目
    提交记录
    讨论
    题解
    视频讲解

给定一个n个点m条边的有向图,图中可能存在重边和自环,所有边权均为正值。

请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出-1。

输入格式
第一行包含整数n和m。

接下来m行每行包含三个整数x,y,z,表示点x和点y之间存在一条有向边,边长为z。

输出格式
输出一个整数,表示1号点到n号点的最短距离。

如果路径不存在,则输出-1。

数据范围
1≤n≤500,
1≤m≤105,
图中涉及边长均不超过10000。

输入样例:
3 3
1 2 2
2 3 1
1 3 4
输出样例:
3

测试过的代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 505, M = 1e5 + 5;

int g[N][N];
int n, m;
int d[N];
bool vis[N];

inline int dijkstra(void) {
	memset(d, 0x3f, sizeof d);
	
	d[1] = 0;
	
	for(int i = 1; i < n; i ++) {
		int t = -1; 
		
		for(int j = 1; j <= n; j ++) {
			if(!vis[j] && (t == -1 || d[j] < d[t]))
				t= j;
		}
		
		if(d[t] > 0x3f3f3f3f / 2) return -1;
		vis[t] = true;
		
		for(int j = 1; j <= n; j ++)
			d[j] = min(d[j], d[t] + g[t][j]);
	}
	
	if(d[n] > 0x3f3f3f3f) return -1;
	return d[n];
}

int main(void) {
	scanf("%d%d", &n, &m);
	memset(g, 0x3f, sizeof g);
	for(int i = 1; i <= m; i ++) {
		int a, b, c;
		scanf("%d%d%d", &a, &b, &c);
		g[a][b] = min(g[a][b], c);
	}
	
	printf("%d\n", dijkstra());
	
	return 0;
}

Dijstra 堆优化
处理无负权边的图

算法思路:
通过优先队列可以直接找到离起点距离最短的点,只有当这个点到起点的距离被更新后才会加到队列中,然后队列总最多就只会有n个点,然后队列里面将得到的这个点标记一下,然后再更新与这个点相连的其他的点的dist。
时间复杂度:0(mlogn)

测试题目:

  1. Dijkstra求最短路 II
    题目
    提交记录
    讨论
    题解
    视频讲解

给定一个n个点m条边的有向图,图中可能存在重边和自环,所有边权均为正值。

请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出-1。

输入格式
第一行包含整数n和m。

接下来m行每行包含三个整数x,y,z,表示点x和点y之间存在一条有向边,边长为z。

输出格式
输出一个整数,表示1号点到n号点的最短距离。

如果路径不存在,则输出-1。

数据范围
1≤n,m≤105,
图中涉及边长均不超过10000。

输入样例:
3 3
1 2 2
2 3 1
1 3 4
输出样例:
3

测试过的代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <map>

using namespace std;

typedef pair<int, int> PII;

const int maxn = 1e5 + 5;

int n, m;
int h[maxn], w[maxn], e[maxn], ne[maxn], idx;
int dist[maxn];
bool vis[maxn];

inline void add(int a, int b, int c) {
	e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}

inline int dijkstra(void) {
	memset(dist, 0x3f, sizeof dist);
	priority_queue<PII, vector<PII>, greater<PII> > q;
	
	dist[1] = 0;
	q.push({dist[1], 1});
	
	while(q.size()) {
		PII t = q.top(); q.pop();
		int u = t.second, du = t.first; 
		
		if(dist[u] > 0x3f3f3f3f / 2) return -1;
		vis[u] = true;
		
		for(int i = h[u]; i != -1; i = ne[i]) {
			int v = e[i];
			if(!vis[v]) {
				if(dist[v] > dist[u] + w[i]) {
					dist[v] = dist[u] + w[i];
					q.push({dist[v], v});
				}
			}
		}
	}
	
	if(dist[n] > 0x3f3f3f3f / 2) return -1;
	return dist[n];
}

int main(void) {
	scanf("%d%d", &n, &m);
	memset(h, -1, sizeof h);
	for(int i = 1; i <= m; i ++) {
		int a, b, c;
		scanf("%d%d%d", &a, &b, &c);
		add(a, b, c);
	}
	
	printf("%d\n", dijkstra());
	
	return 0;
}

Bellman_Ford
处理有负权边

算法思路:
假如有n 个点,m条边,那么这个算法将会去循环n次,每次都没去遍历所有的边,在遍历的时候会更新对应的点到起点的距离。

测试题目:
853. 有边数限制的最短路
题目
提交记录
讨论
题解
视频讲解

给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数。

请你求出从1号点到n号点的最多经过k条边的最短距离,如果无法从1号点走到n号点,输出impossible。

注意:图中可能 存在负权回路 。

输入格式
第一行包含三个整数n,m,k。

接下来m行,每行包含三个整数x,y,z,表示点x和点y之间存在一条有向边,边长为z。

输出格式
输出一个整数,表示从1号点到n号点的最多经过k条边的最短距离。

如果不存在满足条件的路径,则输出“impossible”。

数据范围
1≤n,k≤500,
1≤m≤10000,
任意边长的绝对值不超过10000。

输入样例:
3 3 1
1 2 1
2 3 1
1 3 3
输出样例:
3

AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;

const int N = 505, M = 10005;

struct Edge {
	int a, b, w;
}edge[M];

int n, m, k;
int d[N], tmp[N];

inline int bellman_ford(void) {
	memset(d, 0x3f, sizeof d);
	d[1] = 0;
	
	for(int i = 1; i <= k; i ++) {
		memcpy(tmp, d, sizeof tmp);
		
		for(int j = 1; j <= m; j ++) {
			int a = edge[j].a, b = edge[j].b, w = edge[j].w;
			d[b] = min(d[b], tmp[a] + w);
		}
	}
	
	if(d[n] > 0x3f3f3f3f / 2) return -1;
	return d[n];
}

int main(void) {
	scanf("%d%d%d", &n, &m, &k);
	for(int i = 1; i <= m; i ++) {
		int a, b, c;
		scanf("%d%d%d", &a, &b, &c);
		edge[i].a = a;
		edge[i].b = b;
		edge[i].w = c;
	}
	
	int t = bellman_ford();
	if(t == -1) puts("impossible");
	else printf("%d\n", t);
	
	return 0;
} 

SPFA

可以处理负权边

算法思路:
首先我们将起点的距离设置为0, 然后让让他入队,并且将这个点标记,然后在队列中假如当前u这个点出了队列,那么我们要将这个点的vis[u] = false, 然后在用这个点去更新和他相连接的点的距离,如果某一个点可以被更新,那么更新这个点,然后判断这个点是否在队列中,若是不在就将这个点标记一下,然后放到队列里去。
关键点:只有被更新的点才可以继续去更新其他的点,所以队列里的所有点都是被更新过的点,只有 被更新的点才会放到队列里面去,因为某个点出了队列之后,我们把这个点取消标记,所以后面若是还可以更新这个点的话,这个点还可以再次放到队列里面。

时间复杂度:一般情况下:0(m), 极限情况:0(m * n)

测试题目:
851. spfa求最短路
题目
提交记录
讨论
题解
视频讲解

给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数。

请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible。

数据保证不存在负权回路。

输入格式
第一行包含整数n和m。

接下来m行每行包含三个整数x,y,z,表示点x和点y之间存在一条有向边,边长为z。

输出格式
输出一个整数,表示1号点到n号点的最短距离。

如果路径不存在,则输出”impossible”。

数据范围
1≤n,m≤105,
图中涉及边长绝对值均不超过10000。

输入样例:
3 3
1 2 5
2 3 -3
1 3 4
输出样例:
2

AC代码:

#include <iostream>
#include <cstdio>
#include <queue>
#include <cstring>

using namespace std;

typedef pair<int, int> PII;

const int maxn = 1e5 + 5;

int h[maxn], e[maxn], w[maxn], ne[maxn], idx;
int d[maxn];
bool vis[maxn];
int n, m;

inline void add(int a, int b, int c) {
	e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}

inline int spfa(void) {
	memset(d, 0x3f, sizeof d);
	queue<int> q;
	
	d[1] = 0;
	q.push(1);
	vis[1] = true;
	
	while(q.size()) {
		int u = q.front(); q.pop();
		vis[u] = false;
		
		for(int i = h[u]; i != -1; i = ne[i]) {
			int v = e[i];
			if(d[v] > d[u] + w[i]) {
				d[v] = d[u] + w[i];
				if(!vis[v]) {
					vis[v] = true;
					q.push(v);
				} 
			}
		}
	}
	
	if(d[n] > 0x3f3f3f3f / 2) return -1;
	return d[n];
}

int main(void) {
	scanf("%d%d", &n, &m);
	memset(h, -1, sizeof h);
	for(int i = 1; i <= m; i ++) {
		int a, b, c;
		scanf("%d%d%d", &a, &b, &c);
		add(a, b, c);
	}
	
	int t = spfa();
	if(t == -1) puts("impossible");
	else printf("%d\n", t);
	
	
	return 0;
}

SPFA判断负环

算法思路:
cnt[i], 表示起点到i这个点的路径长度;
因为这个图不一定是一张连通图,所以在spfa中我们一开始需要把所有的点都当作起点放到队列中,若是存在负环,那么一点 会被更新到,并且会一直更新,而这张图中总共只有n个点,当某一的点的路径的长度为n的时候,表示这条路径上有n + 1个点,说明存在负回路。
时间复杂度: 0(m * n)

测试题目:
852. spfa判断负环
题目
提交记录
讨论
题解
视频讲解

给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数。

请你判断图中是否存在负权回路。

输入格式
第一行包含整数n和m。

接下来m行每行包含三个整数x,y,z,表示点x和点y之间存在一条有向边,边长为z。

输出格式
如果图中存在负权回路,则输出“Yes”,否则输出“No”。

数据范围
1≤n≤2000,
1≤m≤10000,
图中涉及边长绝对值均不超过10000。

输入样例:
3 3
1 2 -1
2 3 4
3 1 -4
输出样例:
Yes

AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>

using namespace std;

const int N = 2005, M = 10005;

int n, m;
int h[N], e[M], ne[M], w[M], idx;
int d[N], cnt[N];
bool vis[N];

inline void add(int a, int b, int c) {
	e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}

inline bool spfa(void) {
	queue<int> q;
	
	for(int i = 1; i <= n; i ++) {
		q.push(i);
		vis[i] = true;
	}
	
	while(q.size()) {
		int u = q.front(); q.pop(); 
		vis[u] = false;
		
		for(int i = h[u]; i != -1; i = ne[i]) {
			int v = e[i];
			if(d[v] > d[u] + w[i]) {
				d[v] = d[u] + w[i];
				cnt[v] = cnt[u] + 1;
				if(cnt[v] >= n) return true;
				if(!vis[v]) {
					q.push(v);
					vis[v] = true;
				}
			}
		}
	}
	
	return false;	
}


int main(void) {
	scanf("%d%d", &n, &m);
	memset(h, -1, sizeof h);
	for(int i = 1; i <= m; i ++) {
		int a, b, c;
		scanf("%d%d%d", &a, &b, &c);
		add(a, b, c);
	}
	
	if(spfa()) puts("Yes");
	else puts("No");
	
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值