向面试官、女朋友讲解 - 系列文章
每篇文章为一个知识点,用简短精要但不模糊的语言描述某个算法或者模型,让面试管或者女朋友都能听懂并认可
IC全硅养成记
这个作者很懒,什么都没留下…
展开
-
什么是支持向量机
首先,支持向量机是一种二分类模型,分为三类:线性可分支持向量机线性支持向量机非线性支持向量机1 线性可分支持向量机首先假设数据是线性可分的,学习目标是在特征空间中找到一个分离超平面,能将实例分到不同的类,这样的超平面是无限多的,但如果要求间隔最大化,那解就是唯一的。上面所说的间隔是几何间隔,但我们先介绍一下函数间隔。函数间隔其实就是数据点x离超平面的远近表示,也就是距离,然后他的符号可以表示预测的正确与否,它的定义公式是:γi=yi(w*xi+b),但函数间隔有个问题如果成比例的改变w和b原创 2020-08-09 17:34:42 · 1954 阅读 · 0 评论 -
逻辑回归与线性回归的区别
原创 2020-08-09 17:24:58 · 320 阅读 · 0 评论 -
如何解释逻辑回归?
前提虽然名字叫回归,但逻辑回归其实是一个分类模型,适用于标签 取值离散的情况,如:1 0 0 1。应用场景逻辑回归(Logistic Regression)主要解决二分类问题,用来表示某件事情发生的可能性,输出值永远在0-1之间比如:一封邮件是垃圾邮件的肯能性(是、不是)你购买一件商品的可能性(买、不买)广告被点击的可能性(点、不点)公式及其原理公式:其作用是,对于给定的输入变量,根据选择的参数计算输出变量=1的可能性(estimated probablity)即例如,如果对于给定的原创 2020-08-09 17:22:22 · 563 阅读 · 0 评论 -
三分钟让面试官满意系列 - Bagging和Boosting 的联系及区别
联系Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器,更准确的说这是一种分类算法的组装方法。即将弱分类器组装成强分类器的方法。介绍1、Bagging (bootstrap aggregating)Bagging即套袋法,其算法过程如下:A)从原始样本集中抽取训练集。每轮从原始样本集中使用Bootstraping(Bootstraping,即自助法:它是一种有放回的抽样方法(可能抽到重复的样本))的方法抽取n个训练样本(在训练集中,有些样本原创 2020-05-19 15:07:37 · 312 阅读 · 0 评论 -
面试官、女朋友都满意系列 - 决策树
首先,决策树可以用在回归与分类里面,但主要是用在分类上。决策树主要分为三块:特征选择决策树生成剪枝特征选择主要有两种方法,对应了两种决策树的生成算法:根据信息增益最高的特征来选取特征,这种选取准则(信息增益)的生成算法叫做ID3根据信息增益比最高的特征来选取特征,这种选取准则(信息增益比)的生成算法叫做C4.5信息增益是通过数据集的经验熵减去它的经验条件熵得到的。公式在下面,其实如果将上面的语言说清楚了,面试官也就满意了一大半了,实在问公式,理解起来其实也不难。这种根据信息增益原创 2020-05-16 22:00:27 · 228 阅读 · 0 评论