图像风格迁移背景

图像风格迁移是一种使用神经网络将一种图像风格转移到另一图像的技术,源自Gatys等人的研究。该技术通过Gram矩阵捕获风格信息,并用反向传播调整内容与风格的匹配。自2015年以来,它已广泛应用于设计、艺术和图像处理等领域,推动了创新的发展。
摘要由CSDN通过智能技术生成

图像风格迁移是一种计算机视觉技术,它可以将一张图像的风格应用到另一张图像上,而不改变原图像的内容。这种技术通常使用神经网络来实现,并可以用于许多应用场景,如设计、艺术创作、图像处理等。

图像风格迁移的技术最初由 Gatys 等人提出,他们在 2015 年的论文《A Neural Algorithm of Artistic Style》中描述了一种使用卷积神经网络来实现图像风格迁移的方法。在这篇论文中,他们使用了一种称为 “Gram 矩阵” 的技术来捕捉图像的风格信息,并使用反向传播算法来最小化图像内容和风格之间的差异。

自此以后,图像风格迁移技术发展迅速,并被应用于许多不同的领域。例如,可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值