图像风格迁移是一种计算机视觉技术,它可以将一张图像的风格应用到另一张图像上,而不改变原图像的内容。这种技术通常使用神经网络来实现,并可以用于许多应用场景,如设计、艺术创作、图像处理等。
图像风格迁移的技术最初由 Gatys 等人提出,他们在 2015 年的论文《A Neural Algorithm of Artistic Style》中描述了一种使用卷积神经网络来实现图像风格迁移的方法。在这篇论文中,他们使用了一种称为 “Gram 矩阵” 的技术来捕捉图像的风格信息,并使用反向传播算法来最小化图像内容和风格之间的差异。
自此以后,图像风格迁移技术发展迅速,并被应用于许多不同的领域。例如,可