今天来解一解“难题1”,题目如下图:

难题1
相关前文链接如下:
——《小学六年级奥数:求阴影部分面积》
——《没有办法了,只好用初中数学方法求阴影部分面积了》
为了可以得到比较通用的结果,我将正方形边长10cm用a代替。
首先做如下准备:

图1
以正方形ABCD的顶点A作原点,边AB为x轴的正半轴,边AD为y轴的正半轴,建立直角坐标系。
(一)思路说明
①阴影分为完全相同的两部分,求出一部分再乘以2即可;
②图1中:S阴影=S扇形EGNF-S1-S△EGF;
③三角形EGF中,边EG=EF=正方形边长的一半=a/2,要计算S△EGF和S扇形EGNF取决于求出圆心角∠2的度数;
④S1=S扇形DGMF-S△DGF;
⑤三角形DGF中,边DG=DF=正方形边长=a,要计算S△DGF和S扇形DGMF取决于求出圆心角∠1的度数;
⑥圆心角∠1在以D为圆心,以a为半径的圆中,圆心角∠2在以E为圆心,以a/2为半径的圆中,要求出它们的度数,并不容易,我打算用属于高中数学方法的“解析法”尝试;
⑦求出点D、E、F、G的坐标成为解决问题的关键。
(二)解题过程
①由图直观可得:D(0,a)、E(a/2,a/2),难点是求出点G、F的坐标。
②以D(0,a)为圆心,a为半径的圆的方程是:
x^2+(y-a)^2=a^2 方程1
以E(a/2,a/2)为圆心,a/2为半径的圆的方程是:
(x-a/2)^2+(y-a/2)^2=(a/2)^2 方程2
由方程1、2联立方程组并化简得:
方程组(1):
x^2+y^2-2ay=0
x^2+y^2-ax-ay+a^2/4=0
这是一个二元二次方程组,一般情况下是找不到解析解的,只能用计算机迭代求出近似解,如果真是这样的话,那本题的解法又何止局限于高中!所幸解方程组的过程中会发现,二次项成功抵消,可以得到如下重要的关系式:
y=x-a/4
这成为解决本题的第一道突破口!
(备注:^2表示平方,/表示除以或分数线)
(重要程度:★★★★★)
③方程组(1)有两组解,对照图1,分别为两圆交点G、F的坐标。
G点:
x1=(5-√7)a/8
y1=(3-√7)a/8
F点:
x2=(5+√7)a/8
y2=(3+√7)a/8
(备注:√7表示根号7)
以上表达式只是为了通用的需要,下面将a=10cm代入求得具体的坐标值:
G(2.942810861,0.442810861)
F(9.557189139,7.057189139)
④已知三角形三个顶点的坐标,则该三角形被唯一确定,其任意边长度,任意角大小均可计算,这里需要用到“平面中两点间距离公式”和“余弦定理”,相关知识点见下图:

平面中两点间距离公式(来自百度百科)

余弦定理(来自百度百科)
由已知得:
DG=DF=10cm
EG=EF=5cm
计算得:
GF=((2.942810861-9.557189139)^2+(0.442810861-7.057189139)^2)^0.5
=9.354143467cm
∠1=arccos((DG^2+DF^2-GF^2)÷(2×DG×DF))
=arccos((10^2+10^2-9.354143467^2)÷(2×10×10))
=arccos(0.5625)
=55.77113367°
∠2=arccos((EG^2+EF^2-GF^2)÷(2×EG×EF))
=arccos((5^2+5^2-9.354143467^2)÷(2×5×5))
=arccos(-0.75)
=138.5903779°
⑤根据∠1计算:
S△DGF=DG×DF×sin(∠1)÷2
=10×10×sin(55.77113367°)÷2
=41.33986424(cm^2)
(备注:本步计算三角形的面积用到了“正弦定理”)
S扇形DGMF=π×DG×DF×∠1÷360°
=π×10×10×55.77113367°÷360°
=48.66949551(cm^2)
⑥根据∠2计算:
S△EGF=EG×EF×sin(∠2)÷2
=5×5×sin(138.5903779°)÷2
=8.267972847(cm^2)
(备注:本步计算三角形的面积用到了“正弦定理”)
S扇形EGNF=π×EG×EF×∠2÷360°
=π×5×5×138.5903779°÷360°
=30.23573007(cm^2)
⑦S1=S扇形DGMF-S△DGF
=48.66949551-41.33986424
=7.32963127(cm^2)
⑧S阴影=S扇形EGNF-S1-S△EGF
=30.23573007-7.32963127-8.267972847
=14.63812595(cm^2)
⑨最终结果=S阴影×2
=14.63812595×2
=29.2762519(cm^2)
(三)回顾反思
本文用到了以下小学阶段以上的数学方法:
1.用解析法求解图形,利用圆的方程组求出两圆交点的坐标;
2.根据三角形三个顶点的坐标,利用“平面中两点间距离公式”和“余弦定理”求得三角形中需要的边长和角度,其中角度还要用到反余弦函数arccos()的计算;
3.利用“正弦定理”求解三角形的面积。
有人曾经指出一种求解思路:用求定积分的方法计算。幸好,我所用的方法没有冲进大学去。如果这样的题仍被冠名“小学”的话,我十分好奇这是哪国的小学,并热切期望这所小学里的大神显身,指我迷津,在此首先感谢了。
有缘再会。
