总体标准差和标准差的区别

标准差是衡量数据离散度的统计量,包括样本标准差(s)和总体标准差(σ)。样本标准差用于估计样本数据的分布,公式涉及(n-1);而总体标准差用于描述整个总体的数据分布,其公式使用总数量(N)。两者都是通过计算平方差的均值再开方得到。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总体标准差和标准差都是用来衡量数据集合中数据值的离散程度。但是它们在计算上有所不同。

标准差(sample standard deviation)是在一个样本中计算,用来反映样本数据值分布程度。公式为:

s = sqrt[ (1/(n-1)) * Σ(x-μ)^2 ]

其中: s为样本标准差 x为样本中的数值 μ为样本均值 n为样本中数据的数量

总体标准差(population standard deviation)是在整个总体中计算,用来反映总体数据值分布程度。公式为:

σ = sqrt[ (1/N) * Σ(x-μ)^2 ]

其中: σ为总体标准差 x为总体中的数值 μ为总体均

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值