大纲
- 集合类型及操作
- 序列类型及操作——元组类型、列表类型
- 实例9,基本统计值计算
- 字典类型及操作
- 模块5:jieba库的使用
- 实例10:文本词频统计
集合类型及操作
- 集合类型定义
- 集合操作符
- 集合处理方法
- 集合类型应用场景
集合类型定义
集合是多个元素的无需组合
- 集合类型与数学中的集合概念一致
- 集合元素之间无序,每个元素唯一,不存在相同元素
- 集合元素不可更改,不能是可变数据类型
- 集合用{}表示,元素之间用逗号分隔
- 建立集合类型用{}或set()
- 建立空集合类型,必须使用set()
集合操作符
4个增强操作符
操作符及应用 | 描述 |
---|---|
S|=T | 更新集合S,包括在集合S和T中的所有元素 |
S -=T | 更新集合S,包括在集合S但不在T中的元素 |
S&=T | 更新集合S,包括同时在集合S和T中的元素 |
S ^=T | 更新集合S,包括集合S和T中的非相同元素 |
>>> A={"p","y",123}
>>> B=set("pypy123")
>>> A-B
{123}
>>> B-A
{'1', '2', '3'}
>>> A&B
{'p', 'y'}
>>> A|B
{'2', 'p', 'y', '1', 123, '3'}
>>> A^B
{'1', '2', 123, '3'}
>>>
集合处理方法
操作函数或方法 | 描述 |
---|---|
S.add(x) | 如果x不在集合S中,将x增加到S |
S.discard(x) | 移除S中元素x,如果x不在集合S中,不报错 |
S.remove(x) | 移除S中元素x,如果x不在集合S中,产生KeyError异常 |
S.clear() | 移除S中所有元素 |
S.pop() | 随机返回S的一个元素,更新S,若S为空产生KeyError异常 |
S.copy() | 返回集合S的一个副本 |
len(S) | 返回集合S的元素个数 |
x in S | 判断S中元素x,x在集合S中,返回True,否则返回False |
x not in S | 判断S中元素x,x不在集合S中,返回True,否则返回False |
set(x) | 将其他类型变量x转变为集合类型 |
>>> for item in A:
print(item,end="")
p123y
>>> A
{'p', 123, 'y'}
#下面的程序与for in的作用一样
>>> try:
while True:
print(A.pop(),end="")
except:
pass
p123y
>>> A
set()
集合类型应用场景
包含关系比较
>>> A
set()
>>> "p" in {"p","y",123}
True
>>> {"p","y"}>={"p","y",123}
False
数据去重:集合类型所有元素无重复
>>> ls=["p","p","y","y",123]
>>> s=set(ls) #利用了集合无重复元素的特点
>>> lt=list(s) #将集合转换为列表
>>> s;lt
{'p', 123, 'y'}
['p', 123, 'y']
>>>
序列类型及操作
- 序列类型定义
- 序列处理函数及方法
- 元组类型及操作
- 列表类型及操作
- 序列类型应用场景
序列类型及定义
序列是具有先后关系的一组元素
- 序列是一维元素向量,元素类型可以不同
- 类似数学元素序列: s 0 , s 1 , . . . , s n − 1 s_0,s_1,...,s_{n-1} s0,s1,...,sn−1
- 元素间由序号引导,通过下标访问序列的特定元素
序列是一个基类类型
序列处理函数及方法
操作符及应用 | 描述 |
---|---|
x in s | 如果x是序列s的元素,返回True,否则返回False |
x not in s | 如果x是序列s的元素,返回False,否则返回True |
s+t | 连接两个序列s和t |
s * n或n* s | 将序列s复制n次 |
s[i] | 索引,返回s中的第i个元素,i是序列的序号 |
s[i:j]或s[i:j:k] | 切片,返回序列s中第i到j以为步长的元素子序列 |
5个函数和方法
元组类型及操作
元组是序列类型的一种扩展
- 元组是一种序列类型,一旦创建就不能被修改
- 使用小括号()或tuple()创建,元素间用逗号,分隔
- 可以使用或不使用小括号
元组继承序列类型的全部通用操作
- 元组继承了序列类型的全部通用操作
- 元组因为创建后不能修改,因此没有特殊操作符
- 使用或不适用小括号
>>> creature="cat","dog","tiger","human"
>>> creature
('cat', 'dog', 'tiger', 'human')
>>> color=(0x001100,"blue",creature)
>>> color
(4352, 'blue', ('cat', 'dog', 'tiger', 'human'))
>>> creature[::-1]
('human', 'tiger', 'dog', 'cat')
>>> color=(0x001100,"blue",creature)
>>> color[-1][2]
'tiger'
列表类型及操作
列表是序列类型的一种扩展,十分常用
- 列表是一种序列类型,创建后可以随意被修改
- 使用方括号[]或list创建,元素间用逗号,分隔
- 列表中各元素类型可以不同,无长度限制
>>> ls=["cat","dog","tiger",1024]
>>> ls
['cat', 'dog', 'tiger', 1024]
>>> lt=ls
>>> lt
['cat', 'dog', 'tiger', 1024]
方括号[]真正创建一个列表,赋值仅传递引用
函数及方法 | 描述 |
---|---|
ls[i]=x | 替换列表ls第i元素为x |
ls[i:j:k]=lt | 用列表lt替换ls切片后所对应元素子列表 |
del ls[i] | 删除列表ls中第i元素 |
del ls[i:j:k] | 删除列表ls中第i到第j以k为步长的元素 |
ls+=lt | 更新列表ls,将列表lt元素增加到列表ls中 |
ls *=n | 更新列表ls,其元素重复n次 |
>>> ls=["cat","dog","tiger",1024]
>>> ls[1:2]=[1,2,3,4]
>>> ls
['cat', 1, 2, 3, 4, 'tiger', 1024]
>>> del ls[::3]
>>> ls
[1, 2, 4, 'tiger']
>>> ls*2
[1, 2, 4, 'tiger', 1, 2, 4, 'tiger']
函数或方法 | 描述 |
---|---|
ls.append(x) | 在列表ls最后增加一个元素x |
ls.clear() | 删除列表ls中的所有元素 |
ls.copy() | 生成一个新列表,赋值ls中的所有元素 |
ls.insert(i,x) | 在列表ls的第i位置增加元素x |
ls.pop(i) | 将列表ls中的第i位置元素取出并删除该元素 |
ls.remove(x) | 将列表ls中出现的第一个元素x删除 |
ls.reverse() | 将列表ls中的元素反转 |
>>> ls=["cat","dog","tiger",1024]
>>> ls.append(1234)
>>> ls
['cat', 'dog', 'tiger', 1024, 1234]
>>> ls.insert(3,"human")
>>> ls
['cat', 'dog', 'tiger', 'human', 1024, 1234]
>>> ls.reverse()
>>> ls
[1234, 1024, 'human', 'tiger', 'dog', 'cat']
序列类型应用场景
- 元组用于元素不改变的应用场景,更多用于固定搭配场景
- 列表更加灵活,它是最常用的序列类型
- 最主要作用:表示一组有序数据,进而操作它们
for item in ls:
<语句块>
for item in tp:
<语句块>
数据保护
- 如果不希望数据被程序所改变,转换成元组类型
>>> ls=["cat","dog","tiger",1024]
>>> lt=tuple(ls)
>>> lt
('cat', 'dog', 'tiger', 1024)
基本统计值的分析
基本统计值
- 需求:给出一组数,对他们有个概要理解
- 总个数:len()
- 求和:for …in
- 平均值:求和/总个数
- 方差:各数据与平均数差的平方的和的平均数
- 中位数:排序,然后…奇数找中间1个,偶数找中间两个求平均
#CalStatisticsV1.py
def getNum(): #获取用户不定长度的输入
nums=[]
iNumStr=input("请输入数字(回车退出):")
while iNumStr !="":
nums.append(eval(iNumStr))
iNumStr=input("请输入数字(回车退出):")
return nums
def mean(numbers): #计算均值
s=0.0
for num in numbers:
s=s+num
return s/len(numbers)
def dev(numbers,mean): #计算方差
sdev=0.0
for num in numbers:
sdev=sdev+(num-mean)**2
return pow(sdev/(len(numbers)-1),0.5)
def median(numbers): #计算中位数
sorted(numbers)
size=len(numbers)
if size %2==0:
med=(numbers[size//2-1]+numbers[size//2])/2
else:
med=numbers[size//2]
return med
n=getNum()
m=mean(n)
print("平均值:{},方差:{:.2},中位数:{}.".format(m,dev(n,m),median(n)))
- 获取多个数据:从控制台获取多个不确定数据的方法
- 分隔多个函数:模块化设计方法
- 充分利用函数:充分利用Python提供的内容函数
字典类型及操作
字典类型定义
理解映射
- 映射是一种键(索引)和值(数据)的对应
- 字典是键值对的集合,键值对之间无序
- 采用大括号{}和dict()创建,键值对用冒号:表示
在字典变量中,通过键获得值
>>> d={"中国":"北京","美国":"华盛顿","法国":"巴黎"}
>>> d
{'中国': '北京', '美国': '华盛顿', '法国': '巴黎'}
>>> d["中国"]
'北京'
>>> de={}
>>> type(de)
><class 'dict'>
注1:type(x)返回变量x的类型
注2:{}默认生成字典类型;若想生成空的集合类型,使用set函数完成
字典处理函数及方法
函数或方法 | 描述 |
---|---|
del d[k] | 删除字典d中键k对应的数据值 |
k in d | 判断键k是否存在字典中,如果在返回True,否则返回False |
d.keys() | 返回字典d中所有的键信息 |
d.values() | 返回字典d中所有的值信息 |
d.items() | 返回字典d中所有的键值对信息 |
d.get(k,<default>) | 键k存在,则返回相应值,不在则返回<default>值 |
d.pop(k,<default>) | 键k存在,则取出相应值,不再则返回<default>值 |
d.popitem() | 随机从字典d中取出一个键值对,以元组形式返回 |
d.clear() | 删除所有键值对 |
len(d) | 返回字典d中元素的个数 |
>>> d={"中国":"北京","美国":"华盛顿","法国":"巴黎"}
>>> "中国" in d
True
>>> d.keys()
dict_keys(['中国', '美国', '法国'])
>>> d.values()
dict_values(['北京', '华盛顿', '巴黎'])
>>> d.items()
dict_items([('中国', '北京'), ('美国', '华盛顿'), ('法国', '巴黎')])
>>> d.get("中国","伊斯兰堡")
'北京'
>>> d.get("巴基斯坦","伊斯兰堡")
'伊斯兰堡'
>>> d.popitem()
('法国', '巴黎')
字典类型应用场景
- 映射无处不在,键值对无处不在
- 例如:统计数据出现的次数,数据是键,次数是值
- 最主要的作用:表达键值对数据,进而操作他们
元素遍历
for k in d :
<语句块>
jieba库基本介绍
- jieba是优秀的中文分词第三方库
- jieba是优秀的中文分词第三方库,需要额外安装
- jieba库提供三种分词模式,最简单只需掌握一个函数
jieba分词依靠中文词库
- 利用一个中文词库,确定汉字之间的关联概率
- 汉字见概率大的组成词组,形成分词结果
- 除了分词,用户还可以添加自定义的词组
精确模式、全模式、搜索引擎模式 - 精确模式:把文本精确地切分开,不参在冗余单词
- 全模式:把文本中所有可能地词语都扫描出来,有冗余
- 搜索引擎模式:在精确模式地基础上,对长词再次切分
函数 | 描述 |
---|---|
jieba.lcut(s) | 精确模式,返回一个列表类型地分词结果 >>> jieba.lcut(“中国是一个伟大地国家”) |
jielba.lcut(s,cut_all=True) | 全模式,返回一个列表类型地分词结果,存在冗余 >>> jieba.lcut(“中国是一个伟大地国家”,cut_all=True) |
jieba.lcut_for_search(s) | 搜索引擎模式,返回一个列表类型地分词结果,存在冗余 >>> jieba.lcut_for_search(“中华人民共和国是伟大的”) |
jieba.ass_word(w) | 向分词词典增加新词w >>>jieba.add_word(“蟒蛇语言”) |
实例10:文本词频统计
文本词频统计
- 英文文本:Hamet 分析词频
https://python123.io/index/problem_set/pe/problems/13656 - 中文文本:《新时代中国特色社会主义》
#CalHamletV1.py
def getText():
txt =open("Hamlet.txt","r").read() #打开文件
txt=txt.lower() #将单词改写为小写
for ch in '!"#$%&()*+,-./:;<=>?@[\\]^_{|}·~‘’': #去掉所有的特殊字符,仅保留空格
txt=txt.replace(ch," ")
return txt
hamletTxt=getText()
words=hamletTxt.split() #返回一个列表,由txt根据空格被分割的部分组成
counts={} #生成一个空字典
for word in words:
counts[word]=counts.get(word,0)+1 #键word存在,则返回他的次数,否则返回0
items=list(counts.items()) #经字典类型转化为列表类型
items.sort(key=lambda x:x[1],reverse=True)
for i in range(10):
word,count=items[i]
print("{0:<10}{1:>5}".format(word,count))
注:第一次the出现的时候,counts.get返回0,后面还加上1,这时x=1。第二次the出现的时候,字典中已经有the了,所以counts.get返回第一次出现时赋的值,也就是1,后面还要+1,所以counts[the]=2
#CalSCCNEv1.py
import jieba
txt=open("新时代中国特色社会主义.txt","r",encoding="utf-8").read() #写入文本
words=jieba.lcut(txt) #对txt文本进行分词
counts={}
for word in words:
if len(word)==1:
continue
else:
counts[word]=counts.get(word,0)+1
items=list(counts.items()) #经字典类型转化为列表类型
items.sort(key=lambda x:x[1],reverse=True) #从大到小排序
for i in range(15):
word,count=items[i]
print("{0:<10}{1:>5}".format(word,count))
#CalSCCNEv1.py
import jieba
txt=open("threekingdoms.txt","r",encoding="utf-8").read() #写入文本
excludes={"将军","却说","荆州","二人","不可","不能","如此"}
words=jieba.lcut(txt) #对txt文本进行分词
counts={}
for word in words:
if len(word)==1:
continue
elif word=="诸葛亮" or word=="孔明曰":
rword="孔明"
elif word=="关公" or word=="云长":
rword="关羽"
elif word=="玄德" or word=="玄德曰":
reword=="刘备"
elif word=="孟德" or word=="丞相曰":
reword="曹操"
else:
reword=word
counts[rword]=counts.get(rword,0)+1
for word in excludes:
del counts[word]
items=list(counts.items()) #经字典类型转化为列表类型
items.sort(key=lambda x:x[1],reverse=True) #从大到小排序
for i in range(10):
word,count=items[i]
print("{0:<10}{1:>5}".format(word,count))
举一反三
应用问题的扩展
- 《红楼梦》、《西游记》、《水浒传》···
- 政府工作报告、科研论文、新闻报道···
- 进一步呢?未来还有词云···