1.数据结构的逻辑结构
1.集合结构:集合结构中的数据元素除了属于同一个集合外,它们之间没有任何关系。
2.线性结构:线性结构中的数据元素之间是一对一的关系。
3.树形结构:树形结构中的数据元素之间存在一种一对多的层次关系。
4.图形结构:图形结构的数据元素是多对多的关系。
2.数据结构的物理结构
物理结构是指数据的逻辑结构在计算机中的存储形式。
1.顺序存储结构:开辟一组连续的空间存储数据,通常用数组来实现,数组中的空间本来就是连续的,保证了数据之间的关系。
2.链式存储结构:开辟一组随机的空间存储数据,通常用节点来实现,节点不仅要存储数据,还要存储下一个节点的位置以保证数据之间的关系。
顺序存储结构底层实现是数组,因为数组具有角标,因此在进行查询和修改比较快。
链式存储结构底层实现是链表,因为链表存储数据时,也存储了下一个数据的首地址,因此在插入数据时,只用在需要插入数据的位置进行操作,不需要改变整个链表,因此在进行增加和删除比较快。
3.什么是算法?
算法是解决特定问题求解步骤的描述。
4.如何评价一个算法的好坏?
设计算法要提高程序的运行效率,这里的效率大都指算法的执行时间。
一个高级程序语言编写的程序在计算机上运行时所消耗的时间取决于下列因素:
- 算法采用的策略、方法(算法的本身)
- 编译产生的代码质量(编写算法所采用的语言)
- 问题的输入规模(所要输入数据量的多少)
- 机器执行指令的速度(计算机的软硬件设施)
事后统计方法:这种方法主要是通过设计好的程序的数据,利用计算机计时器对不同算法程序的运行时间进行比较,从而确定算法效率的高低。
事前分析估算法:这种方法主要早计算机程序编制前,依据统计方法对算法进行估算。
5.算法的时间复杂度
在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间度量,基座:T(n)=O(f(n))。它表示随着问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,乘坐算法的渐进时间复杂度。简称时间复杂度。其中f(n)是问题规模n的某个函数。
常数阶O(1):随着N的增大而循环次数并不会发生改变。
线性阶O(n):随着N的增大而增大。
对数阶O(logn):虽然也随着N的增大而增大,但是这种增大属于加速度减小的加速运动。
平方阶O(n*2)
如果N足够大时,此时看的是数量级可以忽略常数,忽略N的系数。
时间复杂度大小排序:
O(1)<O(logn)<O(nlogn)<O(n^2)<O(n^3)<O(2^n)<O(n!)<O(n^n)