- 博客(5)
- 资源 (12)
- 收藏
- 关注
原创 吴恩达深度学习第二课第三周作业及学习心得体会 ——softmax、batchnorm
写在前面本周课程用了两周完成,因为课程让用tensorflow实现,编码时还是更希望自己手写代码实现,而在实现过程中,低估了batchnorm反向计算的难度,导致算法出现各种bug,开始是维度上的bug导致代码无法运行,等代码可以运行时,训练神经网络的时候成本又总会发散,于是静下心来把整个运算的前向和反向过程认真推导了好几遍,期间参考网上一些资料,但感觉都没有把问题真正说清楚,连续三天的推导后...
2018-08-31 00:24:21 2114
原创 吴恩达深度学习第二课第二周作业及学习心得体会——minibatch、动量梯度下降、adam
概述学习课程后,在L2正则化代码的基础上完成该周作业,现将心得体会记录如下。Mini-batch梯度下降概念对m个训练样本,每次采用t(1<t<m)个样本进行迭代更新。具体过程为:将特征X分为T个batch,每个batch的样本数为t(最后一个batch样本数不一定为t)。相应的将标签Y也如此分为T个batch。然后在每次训练时,原本是对所有样本进行一次训练;该算法...
2018-08-15 22:36:12 2746
原创 吴恩达深度学习第二课第一周作业及学习心得体会——初始化权重、L2正则化、dropout
概述学习课程后,再第一周第四课作业的基础上完成该周作业,现将心得体会记录如下。初始化权重代码更改在之前的建立神经网络的过程中,提到权重w不能为0,而将它初始化为一个随机的值。然而在一个深层神经网络中,当w的值被初始化过大时,进入深层时呈指数型增长,造成梯度爆炸;过小时又会呈指数级衰减,造成梯度消失。Python中将w进行随机初始化时,使用numpy库中的np.random.ra...
2018-08-02 23:11:14 1898
原创 吴恩达深度学习第一课第四周作业及学习心得体会
概述在完成吴恩达第一课第四周,即L层neuralnetwork学习后,了解了深层神经网络的结构,然后参考网上的资料,完成该周作业,现将心得体会记录如下。核心代码调用库如下所示import numpy as npimport matplotlib.pyplot as plt初始化参数函数def init_para(layer_dims): L = len(lay...
2018-07-27 11:10:34 2506
原创 吴恩达深度学习第一课第三周作业及学习心得体会
概述在完成吴恩达第一课第三周,即1hiddenlayer的neuralnetwork学习后,了解了两层神经网络的结构,然后参考网上的资料,完成该周作业,现将心得体会记录如下。核心代码调用库如下所示;import numpy as npimport matplotlib.pyplot as pltSigmoid函数;def sigmoid(z): return 1....
2018-07-22 22:26:05 3816 2
吴恩达深度学习第二课第三周作业(含手势文件)
2018-08-31
吴恩达第一课第三周学习心得体会,含本周作业,
2018-07-27
吴恩达第一课第三周作业及三元分类问题解决
2018-07-22
Keil.STM32F4xx_DFP.2.13.0.pack (part2)
2018-07-03
Keil.STM32F4xx_DFP.2.13.0.pack(part1)
2018-07-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人