用python实现Fast Directional Chamfer Matching,并展示两张图上对应点的匹配关系

本文介绍了一种名为FastDirectionalChamferMatching (FDCM) 的图像匹配算法。该算法通过寻找图像间的最短路径来连接相似区域。利用Python的scikit-image库中的directional_chamfer函数计算FDCM距离,并使用MCP_Geometric构建最小生成树以确定匹配点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Fast Directional Chamfer Matching (FDCM) 是一种用于图像匹配的算法。它的基本思想是在图像中寻找最短路径,将两幅图像中的相似区域连接起来。

在 Python 中,可以使用 scikit-image 库来实现 FDCM。首先,需要使用 skimage.filters.directional_chamfer 函数来计算两幅图像之间的 FDCM 距离。然后,可以使用 skimage.future.graph.MCP_Geometric 使用距离信息构建最小生成树,并找出两幅图像之间的匹配点。

下面是一个简单的例子,展示了如何使用 Python 和 sciki

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值