- 博客(13)
- 收藏
- 关注
原创 lidar-rcnn
加入LiDAR RCNN网络:1.环境配置:python >= 3.7tensorflow-gpu 1.14.0CUDACudnn1.1安装tensorflow-gpu步骤:(1) conda install cudatoolkit=10.0.0(2) conda install cudnn=7.4(3) conda install tensorflow-gpu=1.14.0检查是否可用tf.test.is_gpu_available()当出现找不到相应cuda或者cudnn时
2021-09-02 16:57:38 489
原创 TensorFlow中出现 CUDA_ERROR_OUT_OF_MEMORY
参考https://blog.csdn.net/qq_34914551/article/details/86604988我设置后还是没有解决问题,又把batch_size改小了点才解决
2021-03-22 22:13:17 231
原创 ResourceExhaustedError (see above for traceback): OOM when allocating tensor of shape [9216,4096] an
ResourceExhaustedError (see above for traceback): OOM when allocating tensor of shape [9216,4096] and type floa[[Node: training/Modified_SGD/zeros_8 = Const[dtype=DT_FLOAT, value=Tensor<type: float shape: 9216,40b:localhost/replica:0/task:0/device:GPU:
2021-03-22 22:11:28 255
原创 远程服务器下载cuda9.0+cudnn7.1.2
1、进入虚拟环境conda activate pyten362、安装CUDAconda install cudatoolkit=9.03、安装CuDNNconda install cudnn=7.1.4 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64/4、查看cuda版本conda list cuda5、查看cudnn版本conda list cudnn5、安装TensorFlow 1.12.0pip
2021-03-22 22:09:17 560 2
原创 [文章解读] ECCV2020 SSN: Shape Signature Networks for Multi-class Object Detection from Point Clouds
文章目录摘要本文的主要贡献网络结构Shape SignatureSSN:Shape Signature NetworksMulti-task Objectives对本文的思考摘要多类3D对象检测旨在对点云中多个类别的对象进行定位和分类。由于点云的性质,即非结构化,稀疏和嘈杂,未充分利用有益于多类别识别的某些特征,例如形状信息。在本文中,提出了一种新颖的3D形状签名来探索来自点云的形状信息。通过结合对称,凸包和切比雪夫拟合操作,所提出的形状签名不仅紧凑有效,而且对噪声也很鲁棒,可以提高多类判别的特征能
2020-11-10 22:08:04 544
原创 [文章解读] CVPR2020 What You See is What You Get: Exploiting Visibility for 3D Object Detection
这里写自定义目录标题前言摘要主要问题描述本文的主要贡献网络结构通过射线投影计算可见性高效的体素遍历增强对象的射线投影在线占用率映射消融实验对本文的思考前言研究单位:1 卡内基梅隆大学2 Argo AI摘要如a图所示,点云图像不能区分空白点和被遮挡点。但是激光雷达是在遇到物体后进行反射,所以在b图中利用激光投射可视化自由空间,其中绿色是自由的,白色是未知的。本文是通过区分空白点和被遮挡点和占据点,在目标检测网络中添加额外的点的状态特征来提高检测精度。主要问题描述在实时扫描得到的点云只是物体表
2020-11-10 20:20:09 486
原创 解读ECCV2020:Pillar-based Object Detection for Autonomous Driving
文章目录创新点IntroductionPointPillars的介绍MVF的介绍本文主要贡献网络结构生成支柱特征视图融合Pillar-based BackboneDetection HeadlossBilinear interpolation实验Comparing anchor-based, point-based, and pillar-based predictionView combinationsBilinear interpolation or nearest neighbor interpola
2020-10-28 14:49:54 1676 1
原创 解读:Structure Aware Single-stage 3D Object Detection from Point Cloud
文章目录1.前言2.摘要3.Introduction4.网络结构4.1.Backbone and detection networks4.2.Detachable auxiliary network4.3.Part-sensitive warping4.4.Loss1.前言从点云数据检测3D对象在自动驾驶中起着至关重要的作用。通过以完全卷积的方式逐步缩小3D点云的尺寸,当前的单级检测器非常有效。但是,缩小的特征不可避免地会丢失空间信息,并且无法充分利用3D点云的结构信息,从而降低了其定位精度。2.摘
2020-10-22 21:53:40 782
原创 解读CVPR2020:Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud
文章目录1.摘要2.网络结构2.1.Graph Construction3.2.Graph Neural Network with Auto-Registration3.3.Loss3.4.Box Merging and Scoring1.摘要本文提出了一种图神经网络Point-GNN来检测点云中的物体,预测每个顶点所属的对象的类别和bounding box。该网络是单阶段网络。2.网络结构该网络包含三个组成部分:(a)图形构造(b)T次迭代的GNN(c)边界框的合并和打分2.1.Graph
2020-10-22 09:13:24 1715
原创 解读:PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
文章目录1.摘要2.Introduction3.网络结构3.1用于有效特征编码和建议生成的3D Voxel CNN3.2.通过voxel set abstraction进行voxel到关键点场景编码3.3.扩展的VSA模块3.4.预测关键点权重3.5.key point-to-grid RoI特征抽象用于proposal refinement4.损失1.摘要提出了一种新颖的高性能3D对象检测框架,名为Point Voxel-RCNN(PV-RCNN),用于从点云中进行精确的3D对象检测。提出的方法将3
2020-10-20 21:56:20 800
原创 3D点云目标检测综述
写在前面本文是根据Deep Learning for 3D Point Clouds A Survey[1]和A Survey on 3D Object Detection Methods for Autonomous Driving Applications[2]两篇综述论文进行3D点云目标检测研究的讨论和总结。数据类型目前主要应用点云和图像数据进行目标检测。不同的数据类型有不同的特点。点云数据:三维点云提供了精确的几何体和对光照变化的鲁棒性;提供了相对速度定位和精确深度的结构和空间信息;但是点云
2020-10-16 09:55:41 4492
原创 解读:Joint 3D Proposal Generation and Object Detection from View Aggregation
文章目录摘要面临的问题本文主要贡献网络结构摘要摘要提出了一种用于自主驾驶场景的视图对象检测网络AVOD。该神经网络结构利用激光雷达点云和RGB图像生成两个子网络共享的特征:区域建议网络(RPN)和二级检测器网络。该算法利用一种新的结构,能够对高分辨率特征映射进行多模态特征融合,为道路场景中的多个对象类生成可靠的三维目标方案。利用这些建议,第二阶段检测网络执行精确的三维边界盒回归和分类,以预测三维空间中对象的范围、方向和分类。面临的问题近年来,深度神经网络在二维目标检测任务上取得的显著进展并没有很好
2020-10-12 10:30:41 1329 1
原创 解读:Deep Continuous Fusion for Multi-Sensor 3D Object Detection
Deep Continuous Fusion for Multi-Sensor 3D Object Detection解读论文作者及研究单位摘要解决问题研究方法网络结构连续融合层的实现Multi-Sensor Object Detection Network损失论文作者及研究单位Ming Liang1, Bin Yang1,2, Shenlong Wang1,2, and Raquel Urtasun1,2Uber Advanced Technologies Group, University of
2020-10-10 14:15:15 1610
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人