在 TensorFlow 中使用 tf.keras.optimizers.Adam 优化器时,可以使用其可选的参数来调整其性能。常用的参数包括:
- learning_rate:float类型,表示学习率
- beta_1: float类型, 动量参数,一般设置为0.9
- beta_2: float类型, 动量参数,一般设置为0.999
- epsilon: float类型, 用于防止除零错误,一般设置为1e-7
- amsgrad: Boolean类型, 如果为True,使用amsgrad优化方法
代码示例:
optimizer = tf.keras.optimizers.A