并查集的基本操作

本文详细介绍并查集数据结构的数组实现,包括findFather、findFather2、Union操作,以及路径压缩方法findFather3和findFather4。通过实例展示了如何合并集合和优化查询效率。
摘要由CSDN通过智能技术生成
#include<cstdio>

//并查集用数组实现
//father[a] = b, 元素a的父亲结点为b
//father[i] = i, 元素i是该集合的根结点,同一个集合只存在一个根结点 
const int N = 100;

int father[N] = {0};

int findFather(int x){
	while(x != father[x]){
		x = father[x];
	}
	return x;
}

//递归实现 
int findFather2(int x){
	if(x == father[x]) return x;
	else return findFather2(father[x]); 
}

//合并两个集合
void Union(int a, int b){
	int faA = findFather(a);
	int faB = findFather(b);
	if(faA != faB){	//如果不属于同一个集合 
		father[faA] = faB;	//合并它们 
	}
} 

//路径压缩,把当前查询结点的路径上的所有结点的父亲都指向根结点 
int findFather3(int x){
	int a = x;
	while(x != father[x]){
		x = father[x];
	}
	//到这里,x存放的是根结点
	
	while(a != father[a]){
		int z = a;
		a = father[a];
		father[z] = x;
	}
	return x;
} 

//递归实现
int findFather4(int v){
	if(v == father[v]) return v;
	else {
		int F = findFather4(father[v]);
		father[v] = F;
		return F;
	}
}

int main(){
	for(int i = 1; i <= N; i++){
		father[i] = i;	//初始化,每个元素都是独立的一个集合 
	}
	
	father[1] = 1;
	father[2] = 1;
	father[3] = 2;
	father[4] = 2;
	father[5] = 5;
	father[6] = 5;
	
	printf("%d  ", findFather(3));
	printf("%d\n", findFather(6));
	
	Union(3, 6);
		
	printf("%d  ", findFather(3));
	printf("%d\n", findFather(6));

	printf("%d\n", findFather4(4));
	printf("%d ", father[1]);	
	printf("%d ", father[2]);	
	printf("%d\n", father[3]);	
	printf("%d ", father[5]);	
	printf("%d\n", father[6]);	
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值