#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXV = 510; //最大顶点数
const int INF = 1000000000; //无穷大
//n为顶点数,m为边数,st为起点,ed为终点
//G为距离矩阵,cost为花费矩阵
//d[]记录最短距离,c[]记录最小花费
int n, m, st, ed, G[MAXV][MAXV], cost[MAXV][MAXV];
int d[MAXV], c[MAXV], pre[MAXV];
bool vis[MAXV] = {false}; //vis[i]==true表示顶点i已访问,初值均为false
void Dijkstra(int s){ //s为起点
fill(d, d + MAXV, INF); //fill函数将整个d数组赋为INF
fill(c, c + MAXV, INF);
for(int i = 0; i < n; i++) pre[i] = i;
d[s] = 0; //起点s到达自身的距离为0
c[s] = 0; //起点s到达自身的花费为0
for(int i = 0; i < n; i++){ //循环n次
int u = -1, MIN = INF; //u使d[u]最小,MIN存放该最小的d[u]
for(int j = 0; j < n; j++){ //找到未访问的顶点中d[]最小的
if(vis[j] == false && d[j] < MIN){
u = j;
MIN = d[j];
}
}
if(u == -1) return; //剩下的顶点和起点不连通
vis[u] = true; //标记u为已访问
for(int v = 0; v < n; v++){
if(vis[v] == false && G[u][v] != INF){ //如果v未访问 && u能到达v
if(d[u] + G[u][v] < d[v]){ //以u为中介点时能令d[v]变小
d[v] = d[u] + G[u][v]; //优化d[v]
c[v] = c[u] + cost[u][v]; //优化c[v]
pre[v] = u; //令v的前驱为u
} else if(d[u] + G[u][v] == d[v]){ //找到一条相同长度的路径
if(c[u] + cost[u][v] < c[v]){ //以u为中介点时c[v]更小
c[v] = c[u] + cost[u][v]; //优化c[v]
pre[v] = u; //令v的前驱为u
}
}
}
}
}
}
void DFS(int v){ //打印路径
if(v == st){
printf("%d ", v);
return;
}
DFS(pre[v]);
printf("%d ", v);
}
int main(){
scanf("%d%d%d%d", &n, &m, &st, &ed);
int u, v;
fill(G[0], G[0] + MAXV * MAXV, INF); //初始化图G
for(int i = 0; i < m; i++){
scanf("%d%d", &u, &v);
scanf("%d%d", &G[u][v], &cost[u][v]);
G[v][u] = G[u][v];
cost[v][u] = cost[u][v];
}
Dijkstra(st); //Dijkstra算法入口
DFS(ed); //打印路径
printf("%d %d\n", d[ed], c[ed]); //最短距离、最短路径下的最小花费
return 0;
}
PAT-A1030 Travel Plan(Dijkstra)
最新推荐文章于 2022-02-16 20:42:23 发布
本文详细介绍了Dijkstra最短路径算法的实现过程,包括关键代码实现和最短距离及最小花费的计算。通过示例展示了如何使用Dijkstra算法解决图中两点间的最短路径问题,并提供了完整的C++代码实现。最后,程序给出了从起点到终点的最短路径及对应的最小花费。
摘要由CSDN通过智能技术生成