PAT-A1030 Travel Plan(Dijkstra)

本文详细介绍了Dijkstra最短路径算法的实现过程,包括关键代码实现和最短距离及最小花费的计算。通过示例展示了如何使用Dijkstra算法解决图中两点间的最短路径问题,并提供了完整的C++代码实现。最后,程序给出了从起点到终点的最短路径及对应的最小花费。
摘要由CSDN通过智能技术生成
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

const int MAXV = 510;	//最大顶点数 
const int INF = 1000000000;	//无穷大
//n为顶点数,m为边数,st为起点,ed为终点
//G为距离矩阵,cost为花费矩阵 
//d[]记录最短距离,c[]记录最小花费 
int n, m, st, ed, G[MAXV][MAXV], cost[MAXV][MAXV]; 
int d[MAXV], c[MAXV], pre[MAXV];
bool vis[MAXV] = {false};	//vis[i]==true表示顶点i已访问,初值均为false 

void Dijkstra(int s){	//s为起点 
	fill(d, d + MAXV, INF);	//fill函数将整个d数组赋为INF 
	fill(c, c + MAXV, INF);
	for(int i = 0; i < n; i++) pre[i] = i;
	d[s] = 0;	//起点s到达自身的距离为0 
	c[s] = 0;	//起点s到达自身的花费为0 
	for(int i = 0; i < n; i++){	//循环n次 
		int u = -1, MIN = INF;	//u使d[u]最小,MIN存放该最小的d[u] 
		for(int j = 0; j < n; j++){	//找到未访问的顶点中d[]最小的 
			if(vis[j] == false && d[j] < MIN){
				u = j;
				MIN = d[j];
			}
		}
		if(u == -1) return;	//剩下的顶点和起点不连通 
		vis[u] = true;	//标记u为已访问 
		for(int v = 0; v < n; v++){
			if(vis[v] == false && G[u][v] != INF){	//如果v未访问 && u能到达v
				if(d[u] + G[u][v] < d[v]){	//以u为中介点时能令d[v]变小 
					d[v] = d[u] + G[u][v];	//优化d[v] 
					c[v] = c[u] + cost[u][v];	//优化c[v] 
					pre[v] = u;	//令v的前驱为u 
				} else if(d[u] + G[u][v] == d[v]){	//找到一条相同长度的路径 
					if(c[u] + cost[u][v] < c[v]){	//以u为中介点时c[v]更小 
						c[v] = c[u] + cost[u][v];	//优化c[v] 
						pre[v] = u;	//令v的前驱为u 
					}
				}
			}
		}
	}
}

void DFS(int v){	//打印路径 
	if(v == st){
		printf("%d ", v);
		return;
	}
	DFS(pre[v]);
	printf("%d ", v);
}

int main(){
	scanf("%d%d%d%d", &n, &m, &st, &ed);
	int u, v;
	fill(G[0], G[0] + MAXV * MAXV, INF);	//初始化图G 
	for(int i = 0; i < m; i++){
		scanf("%d%d", &u, &v);
		scanf("%d%d", &G[u][v], &cost[u][v]);
		G[v][u] = G[u][v];
		cost[v][u] = cost[u][v];
	}
	Dijkstra(st);	//Dijkstra算法入口 
	DFS(ed);	//打印路径 
	printf("%d %d\n", d[ed], c[ed]);	//最短距离、最短路径下的最小花费 
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值