LIS最长不下降子序列

#include<cstdio>
#include<algorithm>

using namespace std;
const int N = 100;
int A[N], dp[N];	//dp[i]表示以A[i]结尾的最长不下降子序列长度

int main(){
	int n;
	scanf("%d", &n);
	for(int i = 1; i <= n; i++){
		scanf("%d", &A[i]);
	}
	int ans = -1;	//记录最大的dp[i] 
	for(int i = 1; i <= n; i++){	//按顺序计算出dp[i]的值 
		dp[i] = 1;	//边界初始条件(即先假设每个元素自成一个子序列) 
		for(int j = 1; j < i; j++){
			if(A[i] >= A[j] && (dp[j] + 1 > dp[i])){
				dp[i] = dp[j] + 1;	//状态转移方程,用以更新dp[i] 
			}
		}
		ans = max(ans, dp[i]);
	}
	printf("%d", ans);
	return 0;
}
/*
输入: 
8
1 2 3 -9 3 9 0 11
输出: 
6
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值