56 - I. 数组中数字出现的次数
代码:
class Solution {
public int[] singleNumbers(int[] nums) {
LinkedList<Integer> list = new LinkedList<>();
for(int num : nums){
if(list.contains(num)){
list.remove(list.indexOf(num));
}else{
list.add(num);
}
}
int[] res = {list.pop(),list.pop()};
return res;
}
}
改进:
利用异或运算的性质,即两个相同的元素进行异或运算结果为0,故当数组中只有一个元素x出现一次时,对该数组所有元素进行异或运算,得到的结果是x。
1.首先对数组中所有元素进行异或运算,得到的结果n=x^y(x、y为两个所求元素)。
2.利用m求得x、y中首个不相同的位,并以此为依据分组。
3.对两个分组分别进行异或操作,求出x,y。
class Solution {
public int[] singleNumbers(int[] nums) {
int m = 1, n = 0, x = 0, y = 0;
//计算整个数组元素异或的结果(即只出现一次的两个数字的异或结果)
for(int num : nums){
n ^= num;
}
//从右向左找出n中首个不为0的位,并以此为依据将原数组分组
//不为0的位代表“只出现一次的两个数字”在该位不相同
while((n & m) == 0){
m <<= 1;
}
//在两组中分别计算异或结果
for(int num : nums){
if((num & m) == 0){
x ^= num;
}else{
y ^= num;
}
}
return new int[]{x,y};
}
}
49. 丑数
算法思想:
动态规划。首先设置三个指针abc分别代表即将执行乘法(2/3/10)操作的元素。找出其中的最小值赋值给当前dp[i]。接着判断该dp[i]是哪个指针进行乘积操作后得到的,将该指针++。
代码:
class Solution {
public int nthUglyNumber(int n) {
int a = 0, b = 0, c = 0;
int[] dp = new int[n];
dp[0] = 1;
for(int i = 1; i < n; ++i){
int n1 = dp[a] * 2;
int n2 = dp[b] * 3;
int n3 = dp[c] * 5;
dp[i] = Math.min(n1,Math.min(n2,n3));
if(dp[i] == n1) a++;
if(dp[i] == n2) b++;
if(dp[i] == n3) c++;
}
return dp[n-1];
}
}