用php求常见图形的面积,小学常见图形面积公式:菱形公式

本文介绍了小学常见的图形面积公式,如菱形面积公式,并深入探讨了抛物线弓形面积公式及其推导过程。此外,还提供了一个简捷准确的公式用于求解直线被抛物线截得的弦长。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

小学常见图形面积公式:菱形公式

作者:网编整理 丨 来源:网络 丨 发布时间:2019-08-07 16:30丨 分享

42e2d817837ee5b28d917ec6fa0f5342.png

定理简述及证明

菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形的面积也可=底乘高抛物线弓形面积公式抛物线弦长公式及应用本文介绍一个公式,可以简捷准确地求出直线被抛物线截得的弦长,还可以利用它来判断直线与抛物线位置关系及解决一些与弦长有关的题目.方法简单明了,以供参考.

抛物线弓形面积公式等于:以割线为底,以平行于底的切线的切点为顶点的内接三角形的3/4,即:抛物线弓形面积=S+1/4*S+1/16*S+1/64*S+……=4/3*S

定理直线y=kx+b(k≠0)被抛物线y^2=2Px截得的弦AB的长度为∣AB∣=①证明由y=kx+b得x=代入y^2=2Px得y2-+=0∴y1+y2=,y1y2=.∣y1-y2∣==2,∴∣AB∣=∣y1-y2|=当直线y=kx+b(k≠0)过焦点时,b=-,代入①得∣AB∣=P(1+k2),

于是得出下面推论:

推论1:过焦点的直线y=kx-(k≠0)被抛物线y^2=2Px截得的弦AB的长度为∣AB∣=P(1+k2)②在①中,由容易得出下面推论:

推论2:己知直线l:y=kx+b(k≠0)及抛物线C:y^2=2PxⅠ)当P>2bk时,l与C交于两点(相交);Ⅱ)当P=2bk时,l与C交于一点(相切);Ⅲ)当P<2bk时,l与C无交点(相离).

定理应用下面介绍定理及推论的一些应用:

例1:(课本P.57例1)求直线y=x+被抛物线y=x^2截得的线段的长?

分析:题中所给方程与定理中的方程形式不一致,可把x看成y用①即可.

解曲线方程可变形为x^2=2y则P=1,直线方程可变形为x=y-,即k=1,b=-.由①得∣AB∣=4.

例2:求直线2x+y+1=0到曲线y^2-2x-2y+3=0的最短距离.

分析:可求与已知直线平行并和曲线相切的直线,二直线间距离即为要求的最短距离.

解曲线可变形为(y-1)^2=2(x-1)则P=1,由2x+y+1=0知k=-2.由推论2,令2bk=P,解得b=-.∴所求直线方程为y-1=-2(x-1)-,即2x+y-=0.∴.故所求最短距离为.

例3:当直线y=kx+1与曲线y=-1有交点时,求k的范围.

解曲线可变形为(y+1)^2=x+1(x≥-1,y≥-1),则P=1/2.直线相应地可变为y+1=k(x+1)-k+2,∴b=2-k.由推论2,令2bk≤P,即2k(2-k)≤,解得k≤1-或k≥1+.故k≤1-或k≥1+时直线与曲线有交点.注:曲线作怎样变形,直线也必须作相应平移变形,否则会出现错误.

例4:抛物线y^2=2Px内接直角三角形,一直角边所在直线为y=2x,斜边长为5.求抛物线的方程.解设直角三角形为AOB.由题设知kOA=2,kOB=-.由①,|OA|=,|OB|=4P.由|OA|2+|OB|2=|AB|2,得P=.∴抛物线方程为y^2=x.

例5:设O为抛物线的顶点,F为焦点,PQ为过的弦,己知∣OF∣=a,∣PQ∣=b,.求SΔOPQ

解以O为原点,OF为x轴建立直角坐标系(见图),依题设条件,抛物线方程为y^2=4ax(P=2a),设PQ的斜率为k,由②|PQ|=,已知|PQ|=b,k^2=.∵k^2=tg2θ∴sin2θ=.即sinθ=,∴SΔOPQ=SΔOPF+SΔOQF=a|PF|sinθ+a|FQ|sin(π-θ)=absinθ=.

(责任编辑:刘汉甜)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值