Description
正整数x 的约数是能整除x 的正整数。正整数x的约数个数记为div(x)。例如,1,2,5,10 都是正整数10的约数,且div(10)=4。设a 和b是2 个正整数,a≤b,找出a 和b之间约数个数最多的数x。对于给定的2 个正整数a≤b,计算a 和b之间约数个数最多的数。
Input
输入数据的第1行有2个正整数a和 b,a≤1000000000,b≤1000000000。
Output
若找到的a 和b之间约数个数最多的数是x,将div(x)输出。
Sample Input
1 36
Sample Output
9
其他测试数据:
1 36
9
1000000 2000000
288
999998999 999999999
1024
1 1000000000
1344
100 1000000000
1344
666 666666666
1200
这一题卡了一阵子了,是在看不懂,琢磨不明白书上的代码了,只能照抄了。。。
正整数x可以分解为质因子之积:
$$ x = p_1^{N_1} * p_2^{N_2} * p_3^{N_3} * ... * p_k^{N_k} $$
所以约数div的公式为:
$$ div(x) = (N_1 + 1)(N_2 + 1)...(N_k + 1) $$
期间还参考了:
我自己写的AC代码:
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
int lift;
int right;
lift = cin.nextInt();
right = cin.nextInt();
MaxDiv maxDiv = new MaxDiv();
MaxDiv.primes();
if (lift == 1 && right == 1) {
MaxDiv.max_num = 1;
MaxDiv.numb = 1;
} else {
MaxDiv.max_num = 2;
MaxDiv.numb = 1;
MaxDiv.search(1, 1, 1, lift, right);
}
System.out.println(MaxDiv.max_num);
/*System.out.println(MaxDiv.numb);*/
}
}
class MaxDiv {
public static int max_num;// 存最多的质因子个数
public static int numb;// 存质因子最多的数
public final static int MAXP = 31622;// 普通数组最大的大小
public final static int PCOUNT = 3401;// 素数数组最大的大小
public static int prime[] = new int[PCOUNT + 1];// 素数数组
// 欧拉筛法求素数表
public static void primes() {
int k = 0;
boolean num[] = new boolean[MAXP + 1];
for (int i = 2; i <= MAXP; i++) {
num[i] = true;
}
for (int i = 2; i <= MAXP; i++) {
if (num[i]) {
prime[++k] = i;
}
for (int j = 1; j <= k && prime[j] * i <= MAXP; j++) {
num[prime[j] * i] = false;
}
}
}
// 这个函数没明白, 照抄书上的
public static void search(int from, int tot, int num, int low, int up) {
if (num >= 1)
if ((tot > max_num) || ((tot == max_num) && (num < numb))) {
max_num = tot;
numb = num;
}
if (low == up && low > num)
search(from, tot * 2, num * low, 1, 1);
for (int i = from; i <= PCOUNT; i++) {
if (prime[i] > up)
return;
else {
int j = prime[i];
int x = low - 1;
int y = up;
int n = num, t = tot, m = 1;
// 应该是循环除质因子
while (true) {
m++;
t += tot;
x /= j;
y /= j;
if (x == y)
break;
n *= j;
search(i + 1, t, n, x + 1, y);
}
m = 1 << m;
if (tot < max_num / m)
return;
}
}
}
}