求约数java_最多约数问题(Java)

Description

正整数x 的约数是能整除x 的正整数。正整数x的约数个数记为div(x)。例如,1,2,5,10 都是正整数10的约数,且div(10)=4。设a 和b是2 个正整数,a≤b,找出a 和b之间约数个数最多的数x。对于给定的2 个正整数a≤b,计算a 和b之间约数个数最多的数。

Input

输入数据的第1行有2个正整数a和 b,a≤1000000000,b≤1000000000。

Output

若找到的a 和b之间约数个数最多的数是x,将div(x)输出。

Sample Input

1 36

Sample Output

9

其他测试数据:

1 36

9

1000000 2000000

288

999998999 999999999

1024

1 1000000000

1344

100 1000000000

1344

666 666666666

1200

这一题卡了一阵子了,是在看不懂,琢磨不明白书上的代码了,只能照抄了。。。

正整数x可以分解为质因子之积:

$$ x = p_1^{N_1} * p_2^{N_2} * p_3^{N_3} * ... * p_k^{N_k} $$

所以约数div的公式为:

$$ div(x) = (N_1 + 1)(N_2 + 1)...(N_k + 1) $$

期间还参考了:

我自己写的AC代码:

import java.util.Scanner;

public class Main {

public static void main(String[] args) {

Scanner cin = new Scanner(System.in);

int lift;

int right;

lift = cin.nextInt();

right = cin.nextInt();

MaxDiv maxDiv = new MaxDiv();

MaxDiv.primes();

if (lift == 1 && right == 1) {

MaxDiv.max_num = 1;

MaxDiv.numb = 1;

} else {

MaxDiv.max_num = 2;

MaxDiv.numb = 1;

MaxDiv.search(1, 1, 1, lift, right);

}

System.out.println(MaxDiv.max_num);

/*System.out.println(MaxDiv.numb);*/

}

}

class MaxDiv {

public static int max_num;// 存最多的质因子个数

public static int numb;// 存质因子最多的数

public final static int MAXP = 31622;// 普通数组最大的大小

public final static int PCOUNT = 3401;// 素数数组最大的大小

public static int prime[] = new int[PCOUNT + 1];// 素数数组

// 欧拉筛法求素数表

public static void primes() {

int k = 0;

boolean num[] = new boolean[MAXP + 1];

for (int i = 2; i <= MAXP; i++) {

num[i] = true;

}

for (int i = 2; i <= MAXP; i++) {

if (num[i]) {

prime[++k] = i;

}

for (int j = 1; j <= k && prime[j] * i <= MAXP; j++) {

num[prime[j] * i] = false;

}

}

}

// 这个函数没明白, 照抄书上的

public static void search(int from, int tot, int num, int low, int up) {

if (num >= 1)

if ((tot > max_num) || ((tot == max_num) && (num < numb))) {

max_num = tot;

numb = num;

}

if (low == up && low > num)

search(from, tot * 2, num * low, 1, 1);

for (int i = from; i <= PCOUNT; i++) {

if (prime[i] > up)

return;

else {

int j = prime[i];

int x = low - 1;

int y = up;

int n = num, t = tot, m = 1;

// 应该是循环除质因子

while (true) {

m++;

t += tot;

x /= j;

y /= j;

if (x == y)

break;

n *= j;

search(i + 1, t, n, x + 1, y);

}

m = 1 << m;

if (tot < max_num / m)

return;

}

}

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值