在一个探险者的团队中,小明和小红是合作的盗墓贼。
他们成功盗取了一座古墓中的宝藏,包括 𝑛 件不同重量的珍贵文物和黄金,第 𝑖 件宝藏的重量为 𝑎𝑖。
现在,他们希望公平地分配这些宝藏,使得小明所分得的宝藏的总重量等于小红所分得的宝藏的总重量。
请检查是否存在这样的分配方案,需要注意的是,宝藏不能被分割成两半来调整重量,只能整个宝藏进行分配。
第一行包含一个正整数 𝑛,表示有 𝑛 件宝藏。(1<=n<=1e3)
接下来 𝑛 行,第 𝑖 行表示第 𝑖 件宝藏的重量 𝑎𝑖。
如果能公平分配输出 𝑦𝑒𝑠,否则输出 𝑛𝑜。
题解:这题乍一看是一个子集树的深搜,但算一下复杂度就会发现这个指数级别的是完全不可能的。所以这道题要用01背包的思路做。实际做的时候的难点对我来说在于将重量看作体积。也就是说对于dp[i][j],表示的是对于前i个宝藏,我取走重量为n的宝藏最多可以取走多少。那么我们只要判断(dp[n][sum/2]==sum/2)就可以了。(写题解突然就理解更深刻了)
#include <bits/stdc++.h>
using namespace std;
using ll=long long;
int main()
{
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int n;cin>>n;
ll sum=0;
vector<ll>a(n+1);
for(int i=1;i<=n;++i){
cin>>a[i];
sum+=a[i];
}
if(sum%2){
cout<<"no";
return 0;
}
vector<vector<ll>>dp(n+1,vector<ll>(sum+1));
for(int i=1;i<=n;++i){
for(int j=a[i];j<=sum;++j){
dp[i][j]=max(dp[i-1][j],dp[i-1][j-a[i]]+a[i]);
}
}
if(dp[n][sum/2]==sum/2)cout<<"yes";
else cout<<"no";
return 0;
}