盗墓分赃2(01背包)

在一个探险者的团队中,小明和小红是合作的盗墓贼。

他们成功盗取了一座古墓中的宝藏,包括 𝑛 件不同重量的珍贵文物和黄金,第 𝑖 件宝藏的重量为 𝑎𝑖。

现在,他们希望公平地分配这些宝藏,使得小明所分得的宝藏的总重量等于小红所分得的宝藏的总重量。

请检查是否存在这样的分配方案,需要注意的是,宝藏不能被分割成两半来调整重量,只能整个宝藏进行分配。

第一行包含一个正整数 𝑛,表示有 𝑛 件宝藏。(1<=n<=1e3)

接下来 𝑛 行,第 𝑖 行表示第 𝑖 件宝藏的重量 𝑎𝑖。

如果能公平分配输出 𝑦𝑒𝑠,否则输出 𝑛𝑜。

题解:这题乍一看是一个子集树的深搜,但算一下复杂度就会发现这个指数级别的是完全不可能的。所以这道题要用01背包的思路做。实际做的时候的难点对我来说在于将重量看作体积。也就是说对于dp[i][j],表示的是对于前i个宝藏,我取走重量为n的宝藏最多可以取走多少。那么我们只要判断(dp[n][sum/2]==sum/2)就可以了。(写题解突然就理解更深刻了)

#include <bits/stdc++.h>
using namespace std;
using ll=long long;

int main()
{
  ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
  int n;cin>>n;
  ll sum=0;
  vector<ll>a(n+1);
  for(int i=1;i<=n;++i){
    cin>>a[i];
    sum+=a[i];
  }
  if(sum%2){
    cout<<"no";
    return 0;
  }
  vector<vector<ll>>dp(n+1,vector<ll>(sum+1));
  for(int i=1;i<=n;++i){
    for(int j=a[i];j<=sum;++j){
      dp[i][j]=max(dp[i-1][j],dp[i-1][j-a[i]]+a[i]);  
    }
  }
  if(dp[n][sum/2]==sum/2)cout<<"yes";
  else cout<<"no";
  return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值