- 博客(236)
- 资源 (11)
- 收藏
- 关注
原创 mysql数据库删除表数据sql语句
数据库删除表数据操作:1、删除表数据、不释放空间、不删除定义delete from tablename2、删除表数据、释放空间、不删除定义truncate table tablename3、删除表数据、释放空间、删除定义drop table tablename参考:https://www.cnblogs.com/sunline/p/16007787.html......
2022-05-27 18:10:56
1033
原创 神经网络反向传播梯度计算数学原理
神经网络反向传播梯度计算数学原理import numpy as np# N is batch size; D_in is input dimension;# H is hidden dimension; D_out is output dimension.N, D_in, H, D_out = 64, 1000, 100, 10# Create random input and output datax = np.random.randn(N, D_in)y = np.random.ran
2021-11-17 10:46:41
319
原创 Jupyter的配置
进入Jupyter环境中进行配置jupyter lab --generate-config找到配置文件jupyter_lab_config.pyvim jupyter_lab_config.py 进入修改输入/找到需要修改的内容/ 表示查找
2021-11-02 16:53:44
252
原创 Linux上配置jupyter的步骤及与本地映射
进入到jupyter的目录cd .jupyter/设置端口nohub jupyter-lab --port 8892 &查看jupyterps aux | grep jupyter到本地jupyter终端运行ssh -L 8892:localhost:8892 ubuntu02@服务器IP地址安装 ipykernel(1)进入base环境、虚拟环境 安装ipykernel:python -m ipykernel install --user --..
2021-11-02 13:13:33
756
原创 获取根目录的的方法
import os, sysfrom os.path import dirname as dfrom os.path import abspath, joinroot_dir = d(d(d(abspath(file))))sys.path.append(root_dir)base_path = os.path.join(root_dir, “datasets/TextClassification”)
2021-10-15 16:35:45
429
原创 表格开源的数据集FUSD数据集、TableBank数据集、DocBank数据集
FUSD数据集FUSD数据集TableBank数据集 TableBank数据集DocBank数据集DocBank数据集
2021-07-11 12:54:57
2249
原创 git如何将远程仓库代码,覆盖本地代码
本地仓库的代码还未被更新,此时:(1) 更新远程仓库的代码为最新的git fetch --all(2) 让本地代码与origin / master完全相同git reset --hard origin/master(3) git pull
2021-03-31 18:19:54
4796
原创 python安装包,使用镜像安装
腾讯源安装:pip install -i http://mirrors.cloud.tencent.com/pypi/simple sklearn --trusted-host mirrors.cloud.tencent.com
2020-12-25 14:53:41
506
原创 Docker部署项目的步骤,按步骤一步一步来,一切都会成功
拉取空的镜像sudo docker pull ubuntu查看镜像sudo docker images进入镜像中,并创建容器sudo docker run -it f643c72bc252 /bin/bash注:f643c72bc252 为镜像ID查看容器sudo docker ps进入容器中sudo docker exec -it d0d88a00b278 /bin/bash首先更改 apt 配置源,不然下载速度太慢了。配置文件路径:/et..
2020-12-22 14:59:56
3068
原创 第十一章_迁移学习
文章目录第十章 迁移学习10.1 为什么需要迁移学习?(中科院计算所-王晋东)10.2 迁移学习的基本问题有哪些?(中科院计算所-王晋东)10.3 迁移学习有哪些常用概念?(KeyFoece)10.4 迁移学习与传统机器学习有什么区别?(KeyFoece)10.5 迁移学习的基本思路?(中科院计算所-王晋东)10.6 迁移学习与其他概念的区别(Limber)10.7 什么是多任务学习?10.8 多...
2020-11-12 13:47:43
898
原创 第十七章_模型压缩、加速及移动端部署
文章目录第十七章 模型压缩及移动端部署17.1 为什么需要模型压缩和加速?17.2 目前有哪些深度学习模型压缩方法?17.2.1 前端压缩17.2.2 后端压缩17.3 目前有哪些深度学习模型优化加速方法?17.4 影响神经网络速度的4个因素(再稍微详细一点)17.5 改变网络结构设计为什么会实现模型压缩、加速?1. Group convolution2. Depthwise separable ...
2020-11-12 13:47:34
2151
原创 第六章_循环神经网络(RNN)
文章目录第六章 循环神经网络(RNN)CNN和RNN的对比 http://www.elecfans.com/d/775895.html6.1 为什么需要RNN?6.1 RNN种类?RNN train的时候,Loss波动很大6.1 RNNs和FNNs有什么区别?6.2 RNNs典型特点?6.3 RNNs能干什么?6.4 RNNs在NLP中典型应用?6.5 RNNs训练和传统ANN训练异同点?6.6 ...
2020-11-12 13:47:25
2394
原创 第八章_目标检测
文章目录第八章 目标检测8.1 基本概念8.1.1 什么是目标检测?8.1.2 目标检测要解决的核心问题?8.1.2 目标检测算法分类?8.2 Two Stage目标检测算法8.2.1 R-CNN8.2.2 Fast R-CNN8.2.3 Faster R-CNN8.2.4 R-FCN8.2.5 FPN8.2.6 Mask R-CNN8.2.7 RefineDet8.2.8 Cascade R-...
2020-11-12 13:47:13
1972
原创 第九章_图像分割
文章目录第九章 图像分割9.1 传统的基于CNN的分割方法缺点?9.2 FCN9.2.1 FCN改变了什么?9.2.2 FCN网络结构?9.2.3 全卷积网络举例?9.2.4 全连接层和卷积层如何相互转化?9.2.5 为什么传统CNN的输入图片是固定大小?9.2.6 把全连接层的权重W重塑成卷积层的滤波器有什么好处?9.2.7 反卷积层理解9.2.8 跳级(skip)结构9.2.9 模型训练9.2...
2020-11-12 13:46:56
2296
原创 第四章_经典网络
文章目录第四章 经典网络4.1 LeNet54.1.1 模型结构4.1.2 模型结构4.1.3 模型特性4.2 AlexNet4.2.1 模型介绍4.2.2 模型结构4.2.3 模型解读4.2.4 模型特性4.3 可视化ZFNet-转置卷积4.3.1 基本的思想及其过程4.3.2 卷积与转置卷积4.3.3 卷积可视化4.3.4 ZFNet和AlexNet比较4.4 VGGNet4.4.1 模型结构...
2020-11-12 13:46:36
532
原创 第七章_生成对抗网络(GAN)
7.1 什么是生成对抗网络GAN的通俗化介绍生成对抗网络(GAN, Generative adversarial network)自从2014年被Ian Goodfellow提出以来,掀起来了一股研究热潮。GAN由生成器和判别器组成,生成器负责生成样本,判别器负责判断生成器生成的样本是否为真。生成器要尽可能迷惑判别器,而判别器要尽可能区分生成器生成的样本和真实样本。在GAN的原作[1]中,...
2020-11-12 13:46:18
7892
1
原创 第十章_强化学习
文章目录第十章 强化学习10.1 强化学习的主要特点?10.1.1 定义10.2 强化学习应用实例10.3 强化学习和监督式学习、非监督式学习的区别10.3.1 强化学习和监督式学习的区别:10.3.2 强化学习和非监督式学习的区别:10.4 强化学习主要有哪些算法?10.5 深度迁移强化学习算法10.6 分层深度强化学习算法10.7 深度记忆强化学习算法10.8 多智能体深度强化学习算法10.9...
2020-11-12 13:45:45
651
原创 ernie和Bert的参数理解
BERT参数的理解bert参数量隐藏在每一层的shape当中。把如上shape累加即为全部参数量。总参数量=input_parm+12*encoder_parm=(30522+512+2)768+12(76812643+12643+6412768+768+768+768+7683072+3072+3072*768+768+768+768)=101675520个参数简单解释如下:input_parm=(30522+512+2)*768就是输入embeding层对应的参数,分别对应的是**token-em
2020-10-22 10:28:55
3001
原创 反向传播的目的,及其为什么要从后向前计算梯度
1.反向传播的目的目的就是计算权重、偏置等超参数的梯度,方便用优化算法更新参数时用到2.为什么要从后向前计算梯度避免重复计算,从而加快计算速度参考:反向传播算法为什么要“反向”...
2020-09-07 14:23:25
3394
表格算法模型---------------------------------------表格模型.rar
2020-11-11
Bat批处理压缩文件夹
2020-05-16
将JPG转成PNG的透明图片
2019-01-24
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人