mysql傻瓜教程_mysql索引的使用傻瓜教程_MySQL

bitsCN.com

mysql教程:索引的使用

1. 索引(index)是帮助MySQL高效获取数据的数据结构。

它对于高性能非常关键,但人们通常会忘记或误解它。

索引在数据越大的时候越重要。规模小、负载轻的数据库即使没有索引,也能有好的性能, 但是当数据增加的时候,性能就会下降很快。

Tip:蠕虫复制,可以快速复制大量的数据

例:insert into emp select * from emp;

1405LI6050-154S.jpg

2. MySQL中常见的索引

◆普通索引

◆唯一索引

◆主键索引

◆组合索引

◆全文索引

◆外键 (只有innodb存储引擎才支持)

2.1普通索引:

这是最基本的索引,它没有任何限制。有以下几种创建方式:

有以下几种创建方式:

◆创建索引 CREATE INDEX indexName ON tablename(username(length));

◆修改表结构 ALTER tablename ADD INDEX indexName (username(length))

Tip:length可以小于字段实际长度;如果是BLOB 和 TEXT 类型,必须指定length ,下同

◆创建表的时候直接指定 CREATE TABLE mytableuuu( ID INT NOT NULL, username VARCHAR(16) NOT NULL, INDEX indexName (username(length)) );

CREATE TABLE mytable(id INT NOT NULL,username VARCHAR(16) NOT NULL);

create index index1 on mytable(id); //创建普通索引

1405LI60T3P-23604.jpg

◆删掉索引: drop index index1 on mytable;

有一个概念,

行定义:在声明字段(列)的时候定义的,比如primary key

表定义:在所有字段(列)声明完之后定义的,比如primary key,index

CREATE TABLE mytable(id INT NOT NULL,username VARCHAR(16) NOT NULL,index index1(username));

3.0唯一索引(unique)

索引列的值必须唯一,但允许有空值。

1)创建索引:Create UNIQUE INDEX indexName ON tableName(tableColumns(length))

2)修改表结构:Alter tableName ADD UNIQUE [indexName] ON (tableColumns(length)

3)创建表的时候直接指定:Create TABLE tableName ( [...], UNIQUE [indexName](tableColumns(length));

4.0主键索引(primary key)

它是一种特殊的唯一索引,不允许有空值。一般是在建表的时候同时创建主键索引:

CREATE TABLE mytable( ID INT NOT NULL, username VARCHAR(16) NOT NULL, PRIMARY KEY(ID) );

当然也可以用 ALTER 命令。

Tip:记住:一个表只能有一个主键。主键索引就是我们所说的主键。在一个表中,主键只能有一个,但是普通索引和唯一索引可以有多个。

5.0组合索引

5.1多列索引,由多个列共同来组成一个索引。

增加组合索引

alter table mytable add index name_city_age(username,city,age);

对于组合索引,必须以最左索引为前缀,依次排列的,才可以使用到组合索引,中间不能有间隔。

下面的可以使用到组合索引:

◆ username,city,age

◆ usernname,city

◆ usernname

下面的不可以使用到组合索引:

◆ city,age

◆ city

◆ age

注意组合索引,如果在某个表中,有多个索引,我们可以考虑一下,使用组合索引来优化。

5.2 Explain语句:可以查询sql 查询语句使用的索引类型

1405LI6115620-31P9.jpg

6. 为什么有索引,查询加快?

6.1在MySQL中,BTREE,二叉树

二叉树排序35 17 39 9 28 65 56 87

1405LI61421Z-4F10.jpg

6.2索引的优点:

加快查询速度。

6.2 索引的缺点:

占用大量的磁盘空间。

但是对插入、删除和更新有影响。

1405LI61F310-56254.jpg

6.3使用索引时,有以下一些技巧和注意事项:

◆索引不会包含有NULL值的列

只要列中包含有NULL值都将不会被包含在索引中,复合索引中只要有一列含有NULL值,那么这一列对于此复合索引就是无效的。所以我们在数据库设计时不要让字段的默认值为NULL。

◆使用短索引

对串列进行索引,如果可能应该指定一个前缀长度。例如,如果有一个CHAR(255)的列,如果在前10个或20个字符内,多数值是惟一的,那么就不要对整个列进行索引。短索引不仅可以提高查询速度而且可以节省磁盘空间和I/O操作。

◆索引列排序

MySQL查询只使用一个索引,因此如果where子句中已经使用了索引的话,那么order by中的列是不会使用索引的。因此数据库默认排序可以符合要求的情况下不要使用排序操作;尽量不要包含多个列的排序,如果需要最好给这些列创建复合索引。

◆like语句操作

一般情况下不鼓励使用like操作,如果非使用不可,如何使用也是一个问题。like “%aaa%” 不会使用索引,而like “aaa%”可以使用索引。

◆不要在列上进行运算

select * from users where YEAR(adddate)<2007; 将在每个行上进行运算,这将导致索引失效而进行全表扫描,因此我们可以改成

select * from users where adddate

◆不使用NOT IN和<>操作 bitsCN.com

本文原创发布php中文网,转载请注明出处,感谢您的尊重!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值