转载:宽客在线
数据清理是数据科学和机器学习中的重要组成部分,本文介绍了如何在 Tensorflow.js(0.11.1)中处理 MNIST 图像数据,并逐行解释代码。
有人开玩笑说有 80% 的数据科学家在清理数据,剩下的 20% 在抱怨清理数据……在数据科学工作中,清理数据所占比例比外人想象的要多得多。一般而言,训练模型通常只占机器学习或数据科学家工作的一小部分(少于 10%)。
——Kaggle CEO Antony Goldbloom
对任何一个机器学习问题而言,数据处理都是很重要的一步。本文将采用 Tensorflow.js(0.11.1)的 MNIST 样例(https://github.com/tensorflow/tfjs-examples/blob/master/mnist/data.js),逐行运行数据处理的代码。
MNIST 样例
import * as tf from '@tensorflow/tfjs';
const IMAGE_SIZE = 784;
const NUM_CLASSES = 10;
const NUM_DATASET_ELEMENTS = 65000;
const NUM_TRAIN_ELEMENTS = 55000;
const NUM_TEST_ELEMENTS = NUM_DATASET_ELEMENTS - NUM_TRAIN_ELEMENTS;
const MNIST_IMAGES_SPRITE_PATH =
'https://storage.googleapis.com/learnjs-data/model-builder/mnist_images.png';
const MNIST_LABELS_PATH =
'https://storage.googleapis.com/learnjs-data/model-builder/mnist_labels_uint8';
首先,导入 TensorFlow(确保你在转译代码)并建立一些常量,包括:
- IMAGE_SIZE:图像尺寸(28*28=784)
- NUM_CLASSES:标签类别的数量(这个数字可以是 0~9,所以这里有 10 类)
- NUM_DATASET_ELEMENTS:图像总数量(65000)
- NUM_TRAIN_ELEMENTS:训练集中图像的数量(55000)
- NUM_TEST_ELEMENTS:测试集中图像的数量(10000,亦称余数)
MNIST_IMAGES_SPRITE_PATH&MNIST_LABELS_PATH:图像和标签的路径
将这些图像级联为一个巨大的图像,如下图所示:
MNISTData
接下来,从第 38 行开始是 MnistData,该类别使用以下函数:
- load:负责异步加载图像和标注数据;
- nextTrainBatch:加载下一个训练批;
- nextTestBatch:加载下一个测试批;
- nextBatch:返回下一个批的通用函数,该函数的使用取决于是在训练集还是测试集。
本文属于入门文章,因此只采用 load 函数。
load
async load() {
// Make a request for the MNIST sprited image.
const img = new Image();
const canvas = document.createElement('canvas');
const ctx = canvas.getContext('2d');
异步函数(async)是 Javascript 中相对较新的语言功能,因此你需要一个转译器。
Image 对象是表示内存中图像的本地 DOM 函数,在图像加载时提供可访问图像属性的回调。canvas 是 DOM 的另一个元素,该元素可以提供访问像素数组的简单方式,还可以通过上下文对其进行处理。因为这两个都是 DOM 元素,所以如果用 Node.js(或 Web Worker)则无需访问这些元素。有关其他可替代的方法,请参见下文。
imgRequest
const imgRequest = new Promise((resolve, reject) => {
img.crossOrigin = '';
img.onload = () => {
img.width = img.naturalWidth;
img.height = img.naturalHeight;
该代码初始化了一个 new promise,图像加载成功后该 promise 结束。该示例没有明确处理误差状态。
crossOrigin 是一个允许跨域加载图像并可以在与 DOM 交互时解决 CORS(跨源资源共享,cross-origin resource sharing)问题的图像属性。naturalWidth 和 naturalHeight 指加载图像的原始维度,在计算时可以强制校正图像尺寸。
const datasetBytesBuffer =
new ArrayBuffer(NUMDATASETELEMENTS * IMAGESIZE * 4);
const chunkSize = 5000;
canvas.width = img.width;
canvas.height = chunkSize;
该代码初始化了一个新的缓冲区,包含每一张图的每一个像素。它将图像总数和每张图像的尺寸和通道数量相乘。我认为chunkSize的用处在于防止UI一次将太多数据加载到内存中,但并不能100%确定。
for (let i = 0; i < NUMDATASETELEMENTS / chunkSize; i++) {
const datasetBytesView = new Float32Array(
datasetBytesBuffer, i * IMAGESIZE * chunkSize * 4,
IMAGESIZE * chunkSize);
ctx.drawImage(
img, 0, i * chunkSize, img.width, chunkSize, 0, 0, img.width,
chunkSize);
const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
该代码遍历了每一张sprite图像,并为该迭代初始化了一个新的TypedArray。接下来,上下文图像获取了一个绘制出来的图像块。最终,使用上下文的getImageData函数将绘制出来的图像转换为图像数据,返回的是一个表示底层像素数据的对象。
for (let j = 0; j < imageData.data.length / 4; j++) {
// All channels hold an equal value since the image is grayscale, so
// just read the red channel.
datasetBytesView[j] = imageData.data[j * 4] / 255;
}
}
我们遍历了这些像素并除以255(像素的可能最大值),以将值限制在0到1之间。只有红色的通道是必要的,因为它是灰度图像。
this.datasetImages = new Float32Array(datasetBytesBuffer);
resolve();
};
img.src = MNISTIMAGESSPRITEPATH;
);
这一行创建了缓冲,将其映射到保存了我们像素数据的新TypedArray中,然后结束了该诺言。事实上最后一行(设置src属性)才真正启动函数并加载图像。起初困扰我的一件事是TypedArray的行为与其底层数据缓冲相关。你可能注意到了,在循环中设置了datasetBytesView,但它永远都不会返回.datasetBytesView引用了缓冲区的datasetBytesBuffer(初始化使用)。当代码更新像素数据时,它会间接编辑缓冲区的值,然后将其转换为78行的新Float32Array。
获取DOM外的图像数据
如果你在DOM中,使用DOM即可,浏览器(通过画布)负责确定图像的格式以及将缓冲区数据转换为像素。但是如果你在DOM外工作的话(也就是说用的是Node.js或Web Worker),那就需要一种替代方法.fetch提供了一种称为response.arrayBuffer的机制,这种机制使你可以访问文件的底层缓冲。我们可以用这种方法在完全避免DOM的情况下手动读取字节。这里有一种编写上述代码的替代方法(这种方法需要fetch,可以用isomorphic-fetch等方法在Node中进行多边填充):
const imgRequest = fetch(MNISTIMAGESSPRITE_PATH).then(resp => resp.arrayBuffer()).then(buffer => {
return new Promise(resolve => {
const reader = new PNGReader(buffer);
return reader.parse((err, png) => {
const pixels = Float32Array.from(png.pixels).map(pixel => {
return pixel / 255;
});
this.datasetImages = pixels;
resolve();
});
});
});
这为特定图像返回了一个缓冲数组。在写这篇文章时,我第一次试着解析传入的缓冲,但我不建议这样做。如果需要的话,我推荐使用pngjs进行png的解析。当处理其他格式的图像时,则需要自己写解析函数。
有待深入
理解数据操作是用JavaScript进行机器学习的重要部分。通过理解本文所述用例与需求,我们可以根据需要在使用几个关键函数的情况下对数据进行格式化.TensorFlow.js团队一直在改进TensorFlow .js的底层数据API,这有助于更多地满足需求。这也意味着,随着TensorFlow.js的不断改进和发展,API也会继续前进,跟上发展的步伐。
相关阅读:机器学习基础与实践-数据清洗