入门算法-算法的时间复杂性分析(计算书的页码)

1、求下列函数的渐近表达式

(1)3n+10n=O(n)
(2) n/10+2=O(2)
(3)21+1/n=O(1)
(4)10 log3=O(n)

2、分析下面算法属于什么功能,并求算法的时间复杂性函数

int factorial(int n)
{
if (n == 0) return 1;
return n*factorial(n-1);
}

3、算法实现题,要求写出问题的分析过程,然后上机实现算法

统计数字问题:
(1)、问题描述
一本书的页码从自然数1 开始顺序编码直到自然数n。书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。例如,第6 页用数字6 表示,而不是06 或006 等。数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1, 2,…,9。
(2)、算法设计
给定表示书的总页码的10 进制整数n (1≤n≤10) 。编程计算书的全部页码中分别用到多少次数字0,1,2,…,9。

//
//  dome1.cpp
//  arithmet
//
//  Created by ExiFeng on 2019/9/5.
//  Copyright © 2019 ExiFeng. All rights reserved.
//

#include <iostream>

#include <cmath>

using namespace std;

int weishu(int n);
int zuigao(int n);
int yushu(int n);
int f(int n);
int s(int n);
void CountDight(int page, int num[]);


int main(){
    int page;
    while (1) {
        cout<<endl<<"请输入一个页码,以0结束程序:"<<endl;
        cin>>page;
        if (page==0) {
            break;
        }
        int num[10] = {0};
        CountDight(page, num);
        num[0] = num[0] - s(page);
        cout<<"数字0~9出现的次数分别是:"<<endl;
        for (int i = 0; i<10; i++) {
            cout<<num[i]<<' ';
            cout<<endl;
        }
        return 0;
    }
}


int weishu(int n){
    int i = 0;
    while (n) {
        n /= 10;
        i++;
    }
    return i;
}

int zuigao(int n){
    return n/(int)pow(10.0, weishu(n)-1);
}

int yushu(int n){
    return n%(int)pow(10.0, weishu(0)-1);
}

int f(int n){
    return n*(int)pow(10.0, n-1);
}

int s(int n){
    return (1-(int)pow(10.0, weishu(n)))/(1-10);
}

void CountDight(int page, int num[]){
    int n = weishu(page);
    int m = zuigao(page);
    int m1 = yushu(page);
    
    int x = f(n-1);
    for (int i=0; i<10; i++) {
        num[i] += x*m;
    }
    for (int i=0; i<m; i++) {
        num[i] += (int)pow(10.0, n-1);
    }
    num[m] += m1+1;
    num[0] += (n-weishu(m1)-1)*(m1+1);
    
    if (m1 == 0)return;
    else CountDight(m1, num);
    
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值