排序算法java 简书_Java排序算法

基于比较的排序(时间复杂度极限O(nlogn))

选择排序

简介:这是一种最简单直观的排序,是稳定的排序算法。

原理:每一趟从待排序的数列中选出最小的(最大的)一个元素,顺序放到已经排好序的数列的最后,直到所有待排元素全部排好.

时间复杂度:O(n^2)

过程演示

|1 3 5 7 9 2 4 6 8 0 选择第一小的数与0位交换

i j

1 3 5 7 9 2 4 6 8 0

i j

min

0| 3 5 7 9 2 4 6 8 1 选择第二小的数与1位交换

i j

0 3 5 7 9 2 4 6 8 1

i j

min

0 1| 5 7 9 2 4 6 8 3 选择第三小的数与2位交换

0 1 2| 7 9 5 4 6 8 3 选择第四小的数与3位交换

0 1 2 3| 9 5 4 6 8 7 选择第五小的数与4位交换

0 1 2 3 4| 5 9 6 8 7 选择第六小的数与5位交换

0 1 2 3 4 5| 9 6 8 7 选择第七小的数与6位交换

0 1 2 3 4 5 6| 9 8 7 选择第八小的数与7位交换

0 1 2 3 4 5 6 7| 8 9 选择第九小的数与8位交换

0 1 2 3 4 5 6 7 8| 9 待排只剩一个数,排序结束

Java代码实现

public static void selectSort(int[] nums) {

int min, temp, length = nums.length;

for (int i = 0; i < length; i++) {

min = i;

for (int j = i + 1; j < length; j++) {

if (nums[min] > nums[j]) {

min = j;

}

}

temp = nums[i];

nums[i] = nums[min];

nums[min] = temp;

}

}

插入排序

简介:这也是一种简单直观的排序算法,是稳定的排序算法。

原理:构建有序序列,即对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

时间复杂度:O(n^2)。

过程演示

1 3 5 7 9 2 4 6 8 0

1 3 5 7 9 9 4 6 8 0 temp=2

1 3 5 7 7 9 4 6 8 0

1 3 5 5 7 9 4 6 8 0

1 3 3 5 7 9 4 6 8 0

1 2 3 5 7 9 4 6 8 0

1 2 3 5 7 9 9 6 8 0 temp=4

1 2 3 5 7 7 9 6 8 0

1 2 3 5 5 7 9 6 8 0

1 2 3 4 5 7 9 6 8 0

1 2 3 4 5 7 9 9 8 0 temp=6

1 2 3 4 5 7 7 9 8 0

1 2 3 4 5 6 7 9 8 0

1 2 3 4 5 6 7 9 9 0 temp=8

1 2 3 4 5 6 7 8 9 0

1 2 3 4 5 6 7 8 9 9 temp=0

1 2 3 4 5 6 7 8 8 9

1 2 3 4 5 6 7 7 8 9

1 2 3 4 5 6 6 7 8 9

1 2 3 4 5 5 6 7 8 9

1 2 3 4 4 5 6 7 8 9

1 2 3 3 4 5 6 7 8 9

1 2 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Java代码

public static void insertSort(int[] nums) {

int temp, length = nums.length;

for (int i = 1; i < length; i++) {

temp = nums[i];

int j = i;

for (; j >= 1&&temp < nums[j - 1]; j--) {

nums [j] = nums[j - 1];

}

nums[j] = temp;

}

}

希尔排序

简介:也称递减增量排序算法,是插入排序的一种高速且稳定的改进版本。我把希尔排序叫做分组插入排序。是不稳定的排序算法。

原理:先把要排序的序列元素以序列长度的1/2为间隔(向下取证)两两分为一组,对每组分别进行插入排序,排完后再以序列长度的1/4为间隔(向下取整)分组,对每组分别进行插入排序,重复上述操作,直到间隔为一,即最后一趟为普通的插入排序(此时序列已基本有序)。

时间复杂度:取决于分组间隔gap的值,在O(n(lgn)2)~O(n2)之间

实现过程

1 3 5 7 9 2 4 6 8 0 gap=5

1 3 5 7 9 2 4 6 8 9 temp=0

1 3 5 7 0 2 4 6 8 9 gap=2

1 3 5 7 5 2 4 6 8 9 temp=0

1 3 1 7 5 2 4 6 8 9

0 3 1 7 5 2 4 6 8 9

0 3 1 7 5 2 5 6 8 9 temp=4

0 3 1 7 4 2 5 6 8 9

0 3 1 7 4 7 5 6 8 9 temp=2

0 3 1 3 4 7 5 6 8 9

0 2 1 3 4 7 5 6 8 9

0 2 1 3 4 7 5 7 8 9 temp=6

0 2 1 3 4 6 5 7 8 9 gap=1

0 2 2 3 4 6 5 7 8 9 temp=1

0 1 2 3 4 6 5 7 8 9

0 1 2 3 4 6 6 7 8 9 temp=5

0 1 2 3 4 5 6 7 8 9

Java代码

public static void shellSort(int[] nums) {

int temp, length = nums.length;

for (int gap = length/2; gap > 0; gap /= 2) {

for (int i = 0; i < gap ; i++) {

for (int j = i + gap; j < length; j += gap) {

temp = nums[j];

int k = j;

for (; k >= gap&&temp < nums[k - gap]; k -= gap) {

nums[k] = nums[k - gap];

}

nums[k] = temp;

}

}

}

}

冒泡排序

简介:是一种简单的排序算法。因其排序过程中较大(较小)元素会慢慢“浮到”顶部,就像鱼吐泡泡而得名。是稳定的排序。

原理:重复的遍历要排序的序列,一次比较两个元素,如果它们的顺序错误就把它们交换过来,直到序列有序。

时间复杂度:O(n^2)。

|1 3 5 7 9 2 4 6 8 0

|1 3 5 7 9 2 4 6 0 8

|1 3 5 7 9 2 4 0 6 8

|1 3 5 7 9 2 0 4 6 8

|1 3 5 7 9 0 2 4 6 8

|1 3 5 7 0 9 2 4 6 8

|1 3 5 0 7 9 2 4 6 8

|1 3 0 5 7 9 2 4 6 8

|1 0 3 5 7 9 2 4 6 8

0 1| 3 5 7 9 2 4 6 8

0 1| 3 5 7 2 9 4 6 8

0 1| 3 5 2 7 9 4 6 8

0 1| 3 2 5 7 9 4 6 8

0 1 2 3| 5 7 9 4 6 8

0 1 2 3| 5 7 4 9 6 8

0 1 2 3| 5 4 7 9 6 8

0 1 2 3 4 5| 7 9 6 8

0 1 2 3 4 5| 7 6 9 8

0 1 2 3 4 5 6 7| 9 8

0 1 2 3 4 5 6 7 8 9|

Java代码

public static void bubbleSort(int[] nums) {

int length = nums.length;

for (int i = 0; i < length; i++) {

for (int j = length - 1; j > i; j--) {

if (nums[j - 1] > nums[j]) {

int temp = nums[j - 1];

nums[j - 1] = nums[j];

nums[j] = temp;

}

}

}

}

快速排序

简介:在平均状态下,排序n个项目要O(nlogn)次比较。在最坏状况下则需要O(n^2)次比较,但这种状况并不常见。事实上,快速排序通常要明显比其它O(nlogn)算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率的被实现出来,且在大部分真实世界的数据,可以决定设计的选择,减少所需时间的二次方项之可能性。是不稳定的排序算法。

时间复杂度:O(nlogn)~O(n^2)。

实现过程:

第一遍循环

取pivot=1

1 3 5 7 9 2 4 6 8 0

i j

先从尾部j开始,找到比1小的数字往i的位置复制

0 3 5 7 9 2 4 6 8 0

i j

0比1小,被复制到i的位置,复制之后i++

0 3 5 7 9 2 4 6 8 3

i j

这时候要从头部i开始,找到比1大的数字往j的位置复制

3比1大,被复制到j的位置,复制之后j--

0 3 5 7 9 2 4 6 8 3

i

j

再次从j开始寻找比1小的数字,但是没找到,直到i和j相遇(i=j)

第一遍循环结束

0 1 5 7 9 2 4 6 8 3

把pivot复制到循环结束时i的位置

此时pivot把数组分成两部分{0}和{5, 7, 9, 2, 4, 6, 8, 3}

第二次循环分两部分进行

第一部分 第二部分

0 取pivot=5

只有一个数,不用排序 5 7 9 2 4 6 8 3

第一部分结束 i j

和第一遍循环一样先从j开始...

3 7 9 2 4 6 8 3

i j

3 7 9 2 4 6 8 7

i j

3 4 9 2 4 6 8 7

i j

3 4 9 2 9 6 8 7

i

j

3 4 2 2 9 6 8 7

i

j

3 4 2 5 9 6 8 7

第二遍循环结束

只有第二部分进行第三次循环

此时pivot把数组分成两部分{3, 4, 2}和{9, 6, 8, 7}

不断循环,排序,分组,直到最后每一组都只剩1个数

最后“将所有组合并”(实际上数组没有分组,只是每次对部分数据进行操作)

得到{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Java代码(递归版)

public static void recursiveQuickSort(int[] nums, int head, int tail) {

int i = head, j = tail;

int pivot = nums[head];

while (i < j) {

while (i < j) {

if (pivot >= nums[j]) {

nums[i++] = nums[j];

break;

}

j--;

}

while (i < j) {

if (pivot <= nums[i]) {

nums[j--] = nums[i];

break;

}

i++;

}

}

nums[i] = pivot;

if (i - 1 - head > 0) {

recursiveQuickSort(nums, head, i - 1);

}

if (tail - i - 1 > 0) {

recursiveQuickSort(nums, i + 1, tail);

}

}

归并排序

简介:归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法的一个非常典型的应用。是稳定的排序算法。

原理:先申请一个空间用于存储排序后的序列,大小为两个已经排序的序列大小之和。在这两个已经排序的序列头部分分别放置指针,比较指针所指元素的大小,较小的(或较大的)复制到刚刚申请的新序列空间,该指针后移,重复比较、复制到新序列尾部、后移指针,直到遍历完其中一个序列,则另一个序列的剩余元素全部原序复制到新序列尾部。

时间复杂度为O(nlogn),需要O(n)额外空间

实现过程:

{1 3 5 7 9 2 4 6 8 0}

第一层递归 {1 3 5 7 9} | {2 4 6 8 0}

第二层递归 {1 3 5} | {7 9} | {2 4 6} | {8 0}

第三层递归 {1 3} |{5}|{7}|{9} | {2 4}|{6}|{8}|{0}

第四层递归 {1}|{3}|{5}|{7}|{9} |{2}|{4}|{6}|{8}|{0}

第一层归并 {1 3} |{5}| {7 9} | {2 4}|{6}| {0 8}

第二层归并 {1 3 5} | {7 9} | {2 4 6} | {0 8}

第三层归并 {1 3 5 7 9} | {0 2 4 6 8}

第四层归并 {0 1 2 3 4 5 6 7 8 9}

Java代码

public static void merge(int[] nums, int head, int median, int tail) {

int[] nums1 = new int[median - head + 1];

int[] nums2 = new int[tail - median];

int length1 = nums1.length, length2 = nums2.length;

System.arraycopy(nums, head, nums1, 0, length1);

System.arraycopy(nums, median + 1, nums2, 0, length2);

int i = 0, j = 0, k = head;

while (i < length1&&j < length2) {

nums[k++] = (nums1[i] < nums2[j])?nums1[i++]:nums2[j++];

}

while (i < length1) {

nums[k++] = nums1[i++];

}

while (j < length2) {

nums[k++] = nums2[j++];

}

}

public static void recursiveMergeSort(int[] nums, int head, int tail) {

int median = (head + tail)/2;

if (median != tail) {

recursiveMergeSort(nums, head, median);

recursiveMergeSort(nums, median + 1, tail);

}

merge(nums, head, median, tail);

}

堆排序

简介:堆排序与归并排序相似,不同的是堆排序的时间复杂度为O(nlogn)。又与插入排序相似,不同的是堆排序是不稳定的排序算法且具有空间原地址:任何时候都需要常熟个额外的元素空间存储临时数据。因此,堆排序是集合了归并排序和插入排序优点的一种排序算法。

Java代码(大根堆)

public static void maxHeapDown(int[] nums, int head, int tail) {

int p = head, l = 2*p + 1, r = l + 1;

int tmp = nums[p];

for (; l <= tail; p = l,l = 2*l + 1,r = l + 1) {

if (l < tail && nums[l] < nums[r]) {

l = r;

}

if (tmp >= nums[l]) {

break;

} else {

nums[p] = nums[l];

nums[l]= tmp;

}

}

}

public static void heapSort(int[] nums) {

int i, tmp, length = nums.length;

for (i = length/2 - 1; i >= 0; i--) {

maxHeapDown(nums, i, length - 1);

}

for (i = length - 1; i > 0; i--) {

tmp = nums[0];

nums[0] = nums[i];

nums[i] = tmp;

maxHeapDown(nums, 0, i - 1);

}

}

基于计算的排序算法(时间复杂度O(n))

桶排序

简介:是稳定的排序算法。

原理:先找出所给序列中最大的元素,新建一个大小为最大元素加一的序列并初始化为全0,所给序列中元素的大小与新建序列的下标相对应,遍历所给序列,每遇到一个元素,以这个元素为下标的新序列的元素就自加1。

时间复杂度:O(n),需要O(k)额外空间。

实现过程:

遍历所给数组得到最大元素9

新建一个长度为9+1的数组,并初始化为全0 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

遍历所给数组,遇到第一个元素1,将新建数组中下标为1的元素自加1 {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}

同理,遇到第二个元素3,将新建数组中下标为3的元素自加1 {0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0}

遍历完成后,新数组为 {2, 1, 1, 1, 1, 1, 1, 1, 1, 1}

遍历新数组,当遇到非零元素时,为所给数组赋予非零元素个的下标的值,如非零元素2,下标为0,则对所给序列的前两个元素赋值0

Java代码:

public static int maxElemOfNums(int[] nums) {

int max = nums[0];

for (int i = 1; i < nums.length; i++) {

if (nums[i] > max) {

max = nums[i] + 1;

}

}

return max;

}

public static void bucketSort(int[] nums) {

int length = nums.length, max = maxElemOfNums(nums), i, j;

int[] bucket = new int[max];

for (i = 0; i < length; i++) {

bucket[nums[i]]++;

}

for (i = 0,j = 0; i < max; i++) {

while ((bucket[i]--) > 0) {

nums[j++] = i;

}

}

}

计数排序

简介:计数排序是对桶排序的一种改进。是稳定的排序算法。

原理:对于给定序列中的元素x,确定小于(大于)x的元素个数。利用这一信息,可以直接把x放在它在输出序列中的位置。

时间复杂度:O(n+k),需要O(n+k)额外空间。

Java代码

public static void countSort(int[] nums) {

int length = nums.length, max = maxElemOfNums(nums), i, j;

int[] temp = new int[length];

System.arraycopy(nums, 0, temp, 0, length);

int[] bucket = new int[max];

for (i = 0; i < length; i++) {

bucket[temp[i]]++;

}

for (i = 1; i < max; i++) {

bucket[i] += bucket[i - 1];

}

for (i = 0; i < length; i++) {

nums[bucket[temp[i]] - 1] = temp[i];

bucket[temp[i]]--;

}

}

基数排序

简介:基数排序是对计数排序的改进。是最稳定的排序算法。

原理:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后从最低位开始,依次进行一次排序(计数排序)。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。

时间复杂度:O(kn),需要O(n)额外空间。

Java代码:

public static void radixSort(int[] nums) {

int exp, length = nums.length, max = maxElemOfNums(nums), i;

for (exp = 1; (max - 1)/exp > 0; exp *= 10) {

int[] temp = new int[length];

int[] buckets = new int[max];

for (i = 0; i < length; i++) {

buckets[(nums[i]/exp)%10]++;

}

for (i = 1; i < max; i++) {

buckets[i] += buckets[i - 1];

}

for (i = length - 1; i >= 0; i--) {

temp[buckets[(nums[i]/exp)%10] - 1] = nums[i];

buckets[(nums[i]/exp)%10]--;

}

System.arraycopy(temp, 0, nums, 0, length);

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值