
1.t检验和F检验的由来
一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。倘若经比较后发现,出现这结果的机率很少,也就是说,是在机会很少、很罕有的情况下才出现,那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho);相反,若比较后发现,出现的机率很高,并不罕见,那我们便不能很有信心的指出这不是巧合,也许是巧合,也许不是,但我们无法确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。统计显著性(P)就是出现目前样本这个结果的机率。
2.统计学意义(P值)
P值结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。
3.t检验和F检验的区别
至于具体要检定的内容,须看你是在做哪一个统计程序。举一个例子,假如你要检验两独组立样本均值差异是否能推论至总体,而进行t检验。两样本(如某班男生和女生)某变量(如身高)的均值并不相同,但这差别是否能推论至总体,代表总体的情况也是存在著差异呢?会不会总体中男女生根本没有差别,只不过是你很巧抽到这两样本的数值不同?为此,我们进行t检定,算出一个t检定值。与统计学家建立的以「总体中没差别」作基础的随机变量t分布进行比较,看看在多少%的机会(亦即显著性P值)下会得到目前的结果。若显著性P值很少,比如<0.05(少于5%机率),亦即是说,「如果」总体「真的」没有差别,那么就只有在机会很少(5%)、很罕有的情况下,才会出现目前这样本的情况。虽然还是有5%机会出错(1-0.05=5%),但我们还是可以「比较有信心」的说:目前样本中这情况(男女生出现差异的情况)不是巧合,是具统计学意义的,「总体中男女生不存差异」的原假设应予拒绝,简言之,总体应该存在著差异。
每一种统计方法的检定的内容都不相同,同样是t-检定,可能是上述的检定总体中是否存在差异,也可能是检定总体中的单一值是否等于0或者等于某一个数值。 至于F-检定,方差分析(或译变异数分析,Analysis of Variance),它的原理大致也是上面说的,但它是透过检视变量的方差而进行的。它主要用于:均数差别的显著性检验、分离各有关因素并估计其对总变异的作用、分析因素间的交互作用、方差齐性(Equality of Variances)检验等情况。
4,t检验和F检验的联系
t检验过程,是对两样本均值(mean)差别的显著性进行检验。t检验须知道两个总体的方差(Variances)是否相等;t检验值的计算会因方差是否相等而有所不同。所以,Minitab在进行双样本t检验之前,要做等方差检验.
等方差检验有两种:Levene检验 与Bartlette检验(巴特莱多),区别如下:
1)对于正态分布的样本,Bartlette检验极其灵敏,但是对于非正态分布的样本,检验非常不准确;
2)Levene检验是一种更为稳健的检验方法,既可用于正态分布的样本,也可用于非正态分布的样本,同时对比较的各组样本量可以相等或不等;
3)两者的检验原理不同,Bartlette检验是对原始数据检验其方差是否齐性,而Levene检验是检验组间残差是否齐性,而且一般认为要求残差的方差齐性,所以一般统计软件使用Levene检验(同时,根据由原理也可以解释1和2,Levene检验只针对残差,所以与分布无关,而Bartlette检验针对原始数据,所以符合正态分布与非正态分布差别较大);
因此,Levene检验被广泛地公认为是标准的方差齐性检验的方法
如何判定结果具有真实的显著性
在最后结论中判断什么样的显著性水平具有统计学意义,不可避免地带有武断性。换句话说,认为结果无效而被拒绝接受的水平的选择具有武断性。实践中,最后的决定通常依赖于数据集比较和分析过程中结果是先验性还是仅仅为均数之间的两两>比较,依赖于总体数据集里结论一致的支持性证据的数量,依赖于以往该研究领域的惯例。通常,许多的科学领域中产生p值的结果≤0.05被认为是统计学意义的边界线,但是这显著性水平还包含了相当高的犯错可能性。结果0.05≥p>0.01被认为是具有统计学意义,而0.01≥p≥0.001被认为具有高度统计学意义。但要注意这种分类仅仅是研究基础上非正规的判断常规。
所有的检验统计都是正态分布的吗
并不完全如此,但大多数检验都直接或间接与之有关,可以从正态分布中推导出来,如t检验、f检验或卡方检验。这些检验一般都要求:所分析变量在总体中呈正态分布,即满足所谓的正态假设。许多观察变量的确是呈正态分布的,这也是正态分布是现实世界的基本特征的原因。当人们用在正态分布基础上建立的检验分析非正态分布变量的数据时问题就产生了,(参阅非参数和方差分析的正态性检验)。这种条件下有两种方法:一是用替代的非参数检验(即无分布性检验),但这种方法不方便,因为从它所提供的结论形式看,这种方法统计效率低下、不灵活。另一种方法是:当确定样本量足够大的情况下,通常还是可以使用基于正态分布前提下的检验。后一种方法是基于一个相当重要的原则产生的,该原则对正态方程基础上的总体检验有极其重要的作用。即,随着样本量的增加,样本分布形状趋于正态,即使所研究的变量分布并不呈正态。