背包问题总结

背包问题是一个np问题:

一般题意为:

  存在n件物品,每件物品的重量为w[i],价值为v[i],现在有一个包,承重限制为weight,现在让你从n件物品中,选择一些物品装入背包中,在不超重的前提下,使得背包中所装物品的总价值最大。

  由于每件物品【应该是每种物品】存在着两种情况,一种是,每种物品唯有一件,这种情况称为0-1背包问题;

  另一种是,每种物品有无数件,这种情况称为完全背包问题。  

  0-1背包问题:

   0-1背包问题存在两种情况,即,对于第i种物品,你只有选择或者不选择两种情况。

  (1)使用动态规划来解答:    

      考虑对第i件物品的选择策略,有两种策略:
      ①不放第i件物品,那么问题转化为前i-1件物品恰好装入容量为weight的背包中所能获得的最大价值,也即dp[i-1][weight]。【也就是整个背包重量用来装前i-1件物品】
      ②放第i件物品,那么问题转化为前i-1件物品恰好装入容量为weight-w[i]的背包中所能获得的最大价值,也即dp[i-1][weight-w[i]]+c[i]。【也就是前i-1件物品只能装到重量的v-w[i]】

      即选择物品和不选择物品这两种情况而已【weight为当前剩余的背包体积】

       状态转移方程: 

      dp[i][u] = max{dp[i-1][u], dp[i-1][u-w[i]] + v[i]} (1<=i<=n. w[i]<=u<=weight)

      核心代码为:

 for(int i=1; i<n;++i) //从1开始,0为初始边界
     for(int u=w[i];u<=weight;++v)//正序枚举u
         dp[i][u] = max(dp[i-1][u], dp[i-1][u-w[i]] + c[i]);

      当然,为了缩小空间复杂度,我们也可以用一维数组求解,不过,u的遍历就要逆序遍历了   

      状态转移方程:

         dp[i][u] = max(dp[u], dp[u-w[i]]+v[i]); 1<=i<=n, w[i]<=v<=weight

 for(int i=0; i<=n; ++i)
     for(int u=weight; u>=w[i]; --u)//逆序枚举
         dp[i][u] = max(dp[u], dp[u-w[i]]+v[i]);

    (2)使用DFS来求解:

      很简单,即分两条路进行递归  

void DFS(int index, int sumW, int sumV)
{
    if(sumW>weight)    
        return;
    maxV = max(maxV, sumV);
    for(int i=index; i<n; ++i)
    {
        DFS(index+1, sumW, sumV);//不选择index
        DFS(index+1, sumW+w[index], sumV+v[index]);//选择index
    }
}

 完全背包问题:

    (1)使用动态规划求解

      二维数组:

        状态转移方程:

        dp[i][u] = max{dp[i-1][u], dp[i][u-w[i]] + v[i]}; 1<=i<=n, w[i]<=u<=weight

        边界:

        dp[0][u] = 0 0<=v<=u

 for(int i=1; i<n;++i) //从1开始,0为初始边界
      for(int u=w[i];u<=weight;++v)//正序枚举u
          dp[i][u] = max(dp[i-1][u], dp[i][u-w[i]] + c[i]);

      一维数组:

        状态转移方程:

        dp[u] = max{dp[u], dp[u-w[i]] + v[i]} 1<=i<=n, w[i]<=u<=weight

        边界:

        dp[u] = 0 0<=u<=weight

 for(int i=1; i<=n; ++i)
     for(int u=weight; u>=w[i]; --u)
         dp[u] = max(dp[u], dp[u-w[i]]+v[i])

    使用DFS求解

    

void DFS(int index, int sumV, int sumW)
{
    if (sumW > weight)
        return;
    if (sumV> maxV)
        maxV = sumV;
    for (int i = index; i < n; ++i)
    {
        DFS(i + 1, sumV + v[index], sumW + w[index]); //选这件物品 然后继续选这一件 
        DFS(i + 1, sumV + v[index], sumW + w[index]); //选这件物品 然后选下一件 
        DFS(i + 1, sumV, sumW); //不选这件物品 
    }
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
问题描述: 假设有一个能装入总体积为T的背包和n件体积分别为w1 , w2 , … , wn 的物品,能否从n件物品中挑选若干件恰好装满背包,即使w1 +w2 + … + wn=T,要求找出所有满足上述条件的解。例如:当T=10,各件物品的体积{1,8,4,3,5,2}时,可找到下列4组解: (1,4,3,2) (1,4,5) (8,2) (3,5,2)。 问题提示: 可利用回溯法的设计思想来解决背包问题。首先将物品排成一列,然后顺序选取物品装入背包,假设已选取了前i 件物品之后背包没有装满,则继续选取第i+1件物品,若该件物品"太大"不能装入,则弃之而继续选取下一件,直至背包装满为止。但如果在剩余的物品中找不到合适的物品以填满背包,则说明"刚刚"装入背包的那件物品"不合适",应将它取出"弃之一边",继续再从"它之后"的物品中选取,如此重复,直至求得满足条件的解,或者无解。 题目之二: 问题描述: 假设有n件物品,这些物品的重量分别是W1 , W2 , … , Wn,物品的价值分别是V1,V2, …,Vn。求从这n件物品中选取一部分物品的方案,使得所选中的物品的总重量不超过限定的重量W(W<∑Wi, i=1,2,┅,n),但所选中的物品价值之和为最大。 问题提示: 利用递归寻找物品的选择方案。假设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[]中,该方案的总价值保存于变量max_value中。当前正在考察新方案,其物品选择情况保存于数组eop[]中。假设当前方案已考虑了i-1件物品,现在要考虑第i件物品:当前方案已包含的物品的重量之和为tw;因此,若其余物品都选择是可能的话,本方案所能达到的总价值的期望值设为tv。引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值max_value时,继续考察当前方案已无意义,应终止当前方案而去考察下一个方案。 第i件物品的选择有两种可能: ① 物品i被选择。这种可能性仅当包含它不会超过方案总重量的限制才是可行的。选中之后继续递归去考虑其余物品的选择; ② 物品i不被选择。这种可能性仅当不包含物品i也有可能找到价值更大的方案的情况。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值