- 博客(1)
- 收藏
- 关注
原创 机器学习-mooc浙大-4.3深度学习
函数的表达式改变了,避免梯度消失现象,导数改变了,小于零的神经元不用,更稳定了。channel与特征图数相同,特征图数量与卷积核数量一般相同。M-m,刚好有卷积核宽度的区域不会计算,然后除以步长再加一。池化(降采样):把邻近的像素当作一个池子来考虑。最大池化:选最大的作为输出;链式求导,目标函数,后向梯度传导,\。深浅与层数与每层神经元个数相关。增加训练样本:(数据扩增)减缓收敛速度,减少过拟合。GPU进行计算:并行好。求卷积核中参数的梯度。
2023-11-09 10:36:43 43 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人